Opendata, web and dolomites

BioMet SIGNED

Selective Functionalization of Saturated Hydrocarbons

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BioMet project word cloud

Explore the words cloud of the BioMet project. It provides you a very rough idea of what is the project "BioMet" about.

intermediates    selective    constituents    carbon    formed    centuries    engaged    distinguish    expense    performed    metal    despite    standard    always    sequence    synthetic    natural    species    puzzled    chemists    removal    variety    effect    chemical    feedstocks    strain    architectures    organometallic    valorize    skeleton    petroleum    converting    bonds    ideally    substrate    catalyzed    rhodococcus    added    bond    saturated    mutated    materials    double    reaction    minus    geometry    hydrometalation    equivalent    molecular    environmentally    represented    shift    transformed    compounds    efficient    secondary    inert    atoms    benign    representing    sciences    activation    logic    position    alkene    gas    desired    terminus    hydrocarbons    chemically    selectively    preparation    migration    cheap    weaker    synthesis    favor    hydrocarbon    derivatives    primary    alkanes    stronger    trapping    first    tremendously    alkane    paradigm    organic    subsequently    hydrogen    isomerize    functionalization    feedstock    chemistry    functionalized    electrophiles    invention    ing    remaining    raw   

Project "BioMet" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙499˙375 €
 EC max contribution 2˙499˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2023-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 2˙499˙375.00

Map

 Project objective

Despite that C–H functionalization represents a paradigm shift from the standard logic of organic synthesis, the selective activation of non-functionalized alkanes has puzzled chemists for centuries and is always referred to one of the remaining major challenges in chemical sciences. Alkanes are inert compounds representing the major constituents of natural gas and petroleum. Converting these cheap and widely available hydrocarbon feedstocks into added-value intermediates would tremendously affect the field of chemistry. For long saturated hydrocarbons, one must distinguish between non-equivalent but chemically very similar alkane substrate C−H bonds, and for functionalization at the terminus position, one must favor activation of the stronger, primary C−H bonds at the expense of weaker and numerous secondary C-H bonds. The goal of this work is to develop a general principle in organic synthesis for the preparation of a wide variety of more complex molecular architectures from saturated hydrocarbons. In our approach, the alkane will first be transformed into an alkene that will subsequently be engaged in a metal-catalyzed hydrometalation/migration sequence. The first step of the sequence, ideally represented by the removal of two hydrogen atoms, will be performed by the use of a mutated strain of Rhodococcus. The position and geometry of the formed double bond has no effect on the second step of the reaction as the metal-catalyzed hydrometalation/migration will isomerize the double bond along the carbon skeleton to selectively produce the primary organometallic species. Trapping the resulting organometallic derivatives with a large variety of electrophiles will provide the desired functionalized alkane. This work will lead to the invention of new, selective and efficient processes for the utilization of simple hydrocarbons and valorize the synthetic potential of raw hydrocarbon feedstock for the environmentally benign production of new compounds and new materials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOMET" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOMET" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

HANDLING (2019)

Writers handling pictures: a material intermediality (1880-today)

Read More