Opendata, web and dolomites

ProgrES SIGNED

Programmable Enzymatic Synthesis of Bioactive Compounds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ProgrES project word cloud

Explore the words cloud of the ProgrES project. It provides you a very rough idea of what is the project "ProgrES" about.

bottlenecks    timescale    therapeutic    progres    linked    intermediates    chemical    becomes    functionalisation    bioinformatics    biology    diversification    toolkit    novo    simultaneously    resolution    found    protein    programmable    identification    transdisciplinary    bed    match    spectrometry    mediated    de    pharmacopeia    diversity    automated    engineering    scaffolds    analytical    enzymatic    organic    lack    molecular    biocatalytic    stage    unprecedented    introducing    cascades    chemo    structural    tools    complexity    few    limited    diverse    breakthrough    selective    free    imino    synthesis    library    prior    reactions    mass    parallel    biosynthesis    biocatalysts    proof    nature    catalysts    sugars    group    activation    enzymes    away    cascade    biocatalyst    mostly    demands    generating    throughput    manual    platform    catalysed    databases    monooxygenases    moving    synthetic    generate    demonstrated    building    natural    bottleneck    reaction    biosynthetic    label   

Project "ProgrES" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙399˙831 €
 EC max contribution 2˙399˙830 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-07-01   to  2023-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 2˙399˙830.00

Map

 Project objective

Enzymes are now established as highly selective biocatalysts in organic synthesis with the range of catalysts and reactions rapidly increasing through access to large protein databases and high-throughput molecular biology tools for biocatalyst engineering. The diversity of biocatalytic reactions is now at a stage where they can be linked in (chemo)-enzymatic reaction cascades, where two or more chemical and/or enzymatic reactions can be catalysed simultaneously generating de novo biosynthetic pathways for chemical synthesis not found in Nature. These reaction cascades have demonstrated important prior art, however they have been mostly limited to few steps and lack the complexity provided by the natural pharmacopeia. ProgrES aims to achieve a step-change by introducing unprecedented structural complexity into de novo pathways and by moving away from manual to automated, high-throughput cascade design and implementation. The proposal is to use a transdisciplinary approach that addresses three important bottlenecks: i. Identification of enzymatic reactions that allow early functionalisation and late stage diversification of the cascade toolkit to increase structural complexity, building on C-H activation mediated by monooxygenases, which are well established in our research group. ii. As diversity of targets increases, high resolution structural analysis of pathway intermediates and products becomes a bottleneck, which is addressed by high-throughput label free mass spectrometry based analytical tools that will match the demands on timescale and numbers. iii. In parallel, we will establish bioinformatics tools adapted from both chemical synthesis and biosynthesis, to allow programmable enzymatic synthesis for cascade design. As proof-of-concept and test bed for the ProgrES platform we aim to generate a library of diverse synthetic imino sugars. This proposal will lead to a major breakthrough in creating a diverse range of scaffolds of therapeutic interest.

 Publications

year authors and title journal last update
List of publications.
2019 Sebastian C. Cosgrove, Ashley P. Mattey, Michel Riese, Michael R. Chapman, William R. Birmingham, A. John Blacker, Nikil Kapur, Nicholas J. Turner, Sabine L. Flitsch
Biocatalytic Oxidation in Continuous Flow for the Generation of Carbohydrate Dialdehydes
published pages: 11658-11662, ISSN: 2155-5435, DOI: 10.1021/acscatal.9b04819
ACS Catalysis 9/12 2020-03-05
2019 Jack Manning, Michele Tavanti, Joanne L. Porter, Nico Kress, Sam P. De Visser, Nicholas J. Turner, Sabine L. Flitsch
Regio‐ and Enantio‐selective Chemo‐enzymatic C−H‐Lactonization of Decanoic Acid to ( S )‐δ‐Decalactone
published pages: 5724-5727, ISSN: 0044-8249, DOI: 10.1002/ange.201901242
Angewandte Chemie 131/17 2020-03-05
2019 Nicholas J. Weise, Prasansa Thapa, Syed T. Ahmed, Rachel S. Heath, Fabio Parmeggiani, Nicholas J. Turner, Sabine L. Flitsch
Bi‐enzymatic Conversion of Cinnamic Acids to 2‐Arylethylamines
published pages: 995-998, ISSN: 1867-3880, DOI: 10.1002/cctc.201902128
ChemCatChem 12/4 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROGRES" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROGRES" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

DimorphicCircuits (2019)

Elucidating the development of sexually-dimorphic circuits: from molecular mechanisms to synapses and behavior

Read More  

VictPart (2019)

Righting Victim Participation in Transitional Justice

Read More