Opendata, web and dolomites

InsideChromatin SIGNED

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "InsideChromatin" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙490˙380 €
 EC max contribution 1˙490˙380 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2024-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙490˙380.00

Map

 Project objective

Reading the genome is one thing – finding out how it functions, is something else altogether. The next big challenge to understand gene behaviour is deciphering (a) how the genome is organized in space and (b) how this organization influences its function. Inside Eukaryotic cells, genomic DNA is packed together with proteins into a remarkable structure known as chromatin. Nucleosomes, the building blocks of chromatin, interact with each other to enable high-density packaging. Our understanding of chromatin structure is limited by the lack of ‘close up views’ and molecular-level mechanistic information of how nucleosome interactions are regulated in vivo by many highly coupled factors.

InsideChromatin aims to develop a groundbreaking multiscale approach that will push the current limits of realistic computational modelling of in vivo chromatin structure. The vision is to achieve the first multiscale simulation study that describes nucleosome organization inside functionally different kilobase-scale domains, while explicitly accounting for the combination of epigenetic marks, the binding of architectural proteins, and nucleosome remodelling activity that distinguishes each domain. InsideChromatin will integrate atomistic simulations with two levels of coarse-graining and experimental data for validation to understand how nucleosome organization at kilobase scales leads to physical properties at megabase scales. The output from InsideChromatin will bring us closer to the ‘holy grail’ of deciphering the connection between genome characteristics, structure, and function.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "INSIDECHROMATIN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "INSIDECHROMATIN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

TORYD (2020)

TOpological many-body states with ultracold RYDberg atoms

Read More  

ARCTIC (2020)

Air Transport as Information and Computation

Read More