Opendata, web and dolomites

LIGHTPORT SIGNED

From light-stimulated anion receptors to transmembrane carriers and pumps

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LIGHTPORT project word cloud

Explore the words cloud of the LIGHTPORT project. It provides you a very rough idea of what is the project "LIGHTPORT" about.

anions    static    anionic    interdisciplinary    phospholipid    packages    artificial    visible    binding    divided    regulate    decade    prepared    behavior    gated    energy    gradients    photoswitches    proteins    alternative    light    active    wp2    bilayers    responsive    mostly    constructing    completely    interlocked    photoswitchable    receptors    convert    gradient    passive    dual    hosts    structures    cell    contemporary    bacterial    rigid    transporters    transmembrane    directed    solar    channel    utilizing    environment    integrate    wp1    wp3    despite    pumping    deals    store    view    platforms    synthetic    function    death    last    stimuli    localized    modulated    anion    dysregulation    mechanically    actuated    transport    structurally    membrane    mediated    triggered    biological    chemists    pumps    whereas    dynamically    concentration    natural    mimic    membranes    carriers    toward    induce    endeavour    pharmacological    treatment    progress    cancer    route    diseases   

Project "LIGHTPORT" data sheet

The following table provides information about the project.

Coordinator
RIJKSUNIVERSITEIT GRONINGEN 

Organization address
address: Broerstraat 5
city: GRONINGEN
postcode: 9712CP
website: www.rug.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙461 €
 EC max contribution 1˙499˙461 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RIJKSUNIVERSITEIT GRONINGEN NL (GRONINGEN) coordinator 1˙499˙461.00

Map

 Project objective

The transport of anions across the cell membrane, which is mediated by transport proteins, is essential to many important biological processes. Dysregulation of this transport has been associated to various diseases and therefore, chemists endeavour to develop artificial receptors that mimic the function of natural transporters. Despite much progress over the last decade, the current artificial systems are mostly static, while proteins are able to change their activity dynamically in response to stimuli in the environment. To integrate such stimuli-controlled behavior in synthetic systems is a key contemporary challenge. In view of this, the goal of the proposed research program is to develop anion receptors in which the binding properties can be effectively modulated by light and to apply these receptors as transmembrane carriers and pumps, in order to regulate passive transport (i.e. down a concentration gradient) and to induce active transport (i.e. against a concentration gradient). This interdisciplinary program is divided into three work packages: WP1 aims at the development of structurally rigid and visible-light-actuated photoswitches and their use as platforms for constructing anion receptors; WP2 deals with the development of mechanically interlocked structures as photoswitchable anionic hosts; WP3 is directed at utilizing these receptors for light-gated transport and light-driven pumping of anions across phospholipid bilayers, whereas also an alternative dual-responsive anion channel will be prepared. Eventually, it is expected that this work will open a new route toward light-based localized pharmacological treatment, e.g. via light-triggered cancer or bacterial cell death. Furthermore, active transport systems, that are able to build up and maintain concentration gradients across membranes, could provide a completely new view on how to convert and store light (solar) energy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LIGHTPORT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LIGHTPORT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More  

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More