Opendata, web and dolomites

TRANSHOLOMORPHIC SIGNED

New transversality techniques in holomorphic curve theories

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TRANSHOLOMORPHIC project word cloud

Explore the words cloud of the TRANSHOLOMORPHIC project. It provides you a very rough idea of what is the project "TRANSHOLOMORPHIC" about.

ech    lagrangian    topology    dynamical    pseudoholomorphic    analogues    progress    embedding    curve    setting    conflict    super    gromov    dimensional    techniques    whenever    nonpositive    holomorphic    cotangent    rigidity    analytical    multiply    riemann    refinements    gopakumar    neighboring    dynamics    contact    theory    foundations    fundamental    curvature    full    manifolds    formula    symmetry    conjecture    wrong    decisive    unravel    geometry    hutchings    planar    implications    invariants    bundles    curves    reeb    relations    riemannian    overriding    homology    yau    played    analogous    abstract    tackling    completing    drawback    spaces    proving    folds    covered    proof    cobordisms    nearby    moduli    genericity    1985    instance    orbits    examples    symplectic    equation    quasiflexible    dimension    witten    bifurcation    structures    causes    questions    cauchy    integrality    negative    vafa    perturbations    calabi    solutions    explored    singular    transversality    involve   

Project "TRANSHOLOMORPHIC" data sheet

The following table provides information about the project.

Coordinator
HUMBOLDT-UNIVERSITAET ZU BERLIN 

Organization address
address: UNTER DEN LINDEN 6
city: BERLIN
postcode: 10117
website: www.hu-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙624˙500 €
 EC max contribution 1˙624˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HUMBOLDT-UNIVERSITAET ZU BERLIN DE (BERLIN) coordinator 1˙624˙500.00

Map

 Project objective

'In the study of symplectic and contact manifolds, a decisive role has been played by the theory of pseudoholomorphic curves, introduced by Gromov in 1985. One major drawback of this theory is the fundamental conflict between 'genericity' and 'symmetry', which for instance causes moduli spaces of holomorphic curves to be singular or have the wrong dimension whenever multiply covered curves are present. Most traditional solutions to this problem involve abstract perturbations of the Cauchy-Riemann equation, but recently there has been progress in tackling the transversality problem more directly, leading in particular to a proof of the 'super-rigidity' conjecture on symplectic Calabi-Yau 6-manifolds. The overriding goal of the proposed project is to unravel the full implications of these new transversality techniques for problems in symplectic topology and neighboring fields. Examples of applications to be explored include: (1) Understanding the symplectic field theory of unit cotangent bundles for manifolds with negative or nonpositive curvature, with applications to the nearby Lagrangian conjecture and dynamical questions in Riemannian geometry; (2) Developing a comprehensive bifurcation theory for Reeb orbits and holomorphic curves in symplectic cobordisms, leading e.g. to a proof that planar contact structures are 'quasiflexible'; (3) Completing the analytical foundations of Hutchings's embedded contact homology (ECH), a 3-dimensional holomorphic curve theory with important applications to dynamics and symplectic embedding problems; (4) Developing new refinements of the Gromov-Witten invariants based on super-rigidity and bifurcation theory; (5) Defining higher-dimensional analogues of ECH; (6) Proving integrality relations in the setting of 6-dimensional symplectic cobordisms, analogous to the Gopakumar-Vafa formula for Calabi-Yau 3-folds.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRANSHOLOMORPHIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRANSHOLOMORPHIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More