Opendata, web and dolomites

COMPLEXDYNAMICS-PHIM SIGNED

On the Origin of Complex Dynamics in Multi-strain Models: Insights for Public Health Intervention Measures

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COMPLEXDYNAMICS-PHIM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI TRENTO 

Organization address
address: VIA CALEPINA 14
city: TRENTO
postcode: 38122
website: www.unitn.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2021-03-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI TRENTO IT (TRENTO) coordinator 180˙277.00

Map

 Project objective

The dynamics of infectious diseases are by nature non-linear and the understanding of such processes is mathematically difficult, demanding concepts from various fields of mathematics tackling biological questions for real life systems. To be descriptive and predictive, models try to include relevant information on the host-pathogen-vector interactions via the available empirical data. These models have shown rich dynamic structures, with bifurcations up to chaotic attractors able to describe large fluctuations observed in real world disease incidence data. In this project, the origin of the chaotic dynamics in multi-strain epidemiological models will be studied and the mechanisms needed to generate such complex behavior will be identified in basic models, disentangling it from external forcing such as seasonality for example. Multi-strain models will be extended, in collaboration with Prof. Andrea Pugliese (Trento University) providing his experience on vector dynamics, age and space-structured epidemic modeling. The dynamics of vaccine implementation and the control of vector populations, combined with the host-pathogen interactions, will be rigorously evaluated. The over-riding aim of this project is to develop the simplest models able to address specific public health questions, taking into account the chaotic behavior found in such systems, a challenging and new approach.

The developed models will be investigated using innovative methods from dynamical systems theory and stochastic processes, including an ambitious and novel application of a recently developed technique for parameter estimation in such complex systems, a method called maximum likelihood iterated filtering including dynamic noise in likelihood functions for multi-strain dynamics. This proposal requires a highly interdisciplinary approach with results applied well beyond the state-of-the-art.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COMPLEXDYNAMICS-PHIM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COMPLEXDYNAMICS-PHIM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More  

EPIC (2019)

Evolution of Planktonic Gastropod Calcification

Read More  

NeuroSens (2019)

Neuromodulation of Sensory Processing

Read More