Opendata, web and dolomites

PROTONMBRT SIGNED

Spatial fractionation of the dose in proton therapy: a novel therapeutic approach

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "PROTONMBRT" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙997˙870 €
 EC max contribution 1˙997˙870 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2024-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙997˙870.00

Map

 Project objective

Radiotherapy (RT) is one of the most frequently used methods for cancer treatment (above 50% of patients will receive RT). Despite remarkable advancements, the dose tolerances of normal tissues continue to be the main limitation in RT. Finding novel approaches that allow increasing normal tissue resistance is of utmost importance. This would make it possible to escalate tumour dose, resulting in an improvement in cure rate. With this aim, I propose a new approach, called proton minibeam radiation therapy (PROTONMBRT), which combines the prominent advantages of protons for RT and the remarkable tissue preservation provided by the use of submillimetric field sizes and a spatial fractionation of the dose, as in minibeam radiation therapy (MBRT). The main objectives of this project are to explore the gain of therapeutic index for radioresistant tumors, to disentangle the biological mechanisms involved and to evaluate the clinical potential of this novel approach. For this purpose, a method for minibeam generation adequate for patient treatments and a complete set of dosimetric tools will be developed. Then, tumour control effectiveness will be evaluated, and the possible biological mechanisms involved both in tumour and normal tissue responses will be disentangled. The gain in normal tissue recovery can foster one of the main applications of proton therapy, paediatric oncology, as well as open the door to an effective treatment of very radioresistant tumours, such as high-grade gliomas, which are currently mostly treated palliatively.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PROTONMBRT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PROTONMBRT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

IMPACCT (2019)

Improved Patient Care by Combinatorial Treatment

Read More  

BioSilica (2020)

Materials synthesis in vivo – intracellular formation of nanostructured silica by microalgae

Read More  

VERICOMP (2019)

Foundations of Verifiable Computing

Read More