Opendata, web and dolomites


Vessel co-option and radioresistance in glioblastoma

Total Cost €


EC-Contrib. €






 VESSEL CO-COPTION project word cloud

Explore the words cloud of the VESSEL CO-COPTION project. It provides you a very rough idea of what is the project "VESSEL CO-COPTION" about.

microscopy    rate    despite    chemotherapy    aggressive    glioblastoma    impacts    option    cellular    vascular    cultures    deadliest    multipotent    organotypic    mechanism    gbm    dynamics    uncover    gscs    90    multiple    co    underlying    fraction    types    cancer    bulk    glioma    benefit    migration    involvement    gsc    patients    confers    attributed    radiotherapy    therapy    receive    brain    mechanistically    niche    unknown    perivascular    regime    strategies    regrowth    tumor    cells    intravital    vessel    radioresistance    self    radiation    resection    initiating    treatment    vessels    recurrence    survival    insights    resistance    differentiated    interaction    orthotopic    highlights    mostly    molecular    models    radiosensitize    therapeutic    screenings    human    removed    invasive    understand    directional    exact    hypothesis    multiphoton    efficacy    connections    spreading    clinically    caused    renewing    stem    progression    space   

Project "VESSEL CO-COPTION" data sheet

The following table provides information about the project.


Organization address
address: rue d'Ulm 26
city: PARIS
postcode: 75231

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙499˙823 €
 EC max contribution 1˙499˙823 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2024-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT CURIE FR (PARIS) coordinator 1˙499˙823.00


 Project objective

Glioblastoma (GBM) is one of the deadliest types of human cancer. Despite a very aggressive treatment regime – including resection of the tumor, radiation and chemotherapy – its estimated recurrence rate is more than 90%. Recurrence is mostly caused by the regrowth of highly invasive cells spreading from the tumor bulk, which are not removed by resection. To develop an effective therapeutic approach, we need to better understand the underlying molecular mechanism of radiation resistance and tumor spreading in GBM. Radioresistance in GBM is attributed to glioma stem cells (GSCs), a fraction of perivascular, self-renewing, multipotent and tumor-initiating cells. Growing evidence highlights the perivascular space as a niche for GSC survival, resistance to therapy, progression and dissemination. The unknown factor is the dynamics of GSCs, how they end up in the vascular niche and how this impacts on radioresistance. My overall hypothesis is that GSCs reach the perivascular niche through vessel co-option - the directional migration of tumor cells towards vessels - and that targeting vessel co-option has the potential to radiosensitize GBM. With this project, we aim to uncover the exact molecular and cellular connections among vessel co-option, GSCs, the vascular niche and radioresistance. Using multiple strategies, such as multiphoton intravital microscopy, orthotopic models of GBM, organotypic cultures, screenings and survival studies, we will investigate and mechanistically change the dynamics of GSC and differentiated GBM cells in order to understand the role of their interaction with brain vessels and whether this confers resistance to radiotherapy. These studies will provide clinically relevant insights into the involvement of GSCs, the vascular niche and vessel co-option in the resistance of GBM to therapy. Since all GBM patients receive radiotherapy, many would benefit from therapeutic strategies aimed at increasing its efficacy.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VESSEL CO-COPTION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VESSEL CO-COPTION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NeuroMag (2019)

The Neurological Basis of the Magnetic Sense

Read More  

TOROS (2019)

A Theory-Oriented Real-Time Operating System for Temporally Sound Cyber-Physical Systems

Read More  

sociOlfa (2020)

Learning from social scents: from territory to identity

Read More