Opendata, web and dolomites

VILB SIGNED

Very high temperature HVDC busbar (180 - 240°) with reliable and cost effective technology

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 VILB project word cloud

Explore the words cloud of the VILB project. It provides you a very rough idea of what is the project "VILB" about.

industry    replace    modules    varnished    entirely    temperature    accelerating    company    mature    secondly    circuits    deg    ending    appearing    discharge    press    heating    busbar    laminated    ready    patent    resin    lower    firstly    electric    electrotechnical    industrial    thirdly    auxel    bonded    dielectric    more    patented    inspired    impregnation    resistant    electrical    leader    insulation    automotive    conjointly    strategy    duplicated    trl6    trl    laboratory    voltage    film    simplified    10    thanks    technological    tested    vilb    power    simulated    aeronautical    environment    glue    designed    hvdc    operate    productivity    demonstration    prototypes    lbb    lsee    co    busbars    perfectly    energy    impacts    films    thermally    aircraft    impregnated    lifetime    limited    insulating    pending    performance    assembly    machines    80    ageing    environments    prototype    30    converters    temperatures    technologies    risk    tiny    240    harsh    partial    breakthrough    savings   

Project "VILB" data sheet

The following table provides information about the project.

Coordinator
AUXEL 

Organization address
address: RUE DE LA BARRE ZONE INDUSTRIELLE
city: GONDECOURT
postcode: 59147
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 668˙276 €
 EC max contribution 497˙355 € (74%)
 Programme 1. H2020-EU.3.4.5.6. (ITD Systems)
 Code Call H2020-CS2-CFP07-2017-02
 Funding Scheme CS2-IA
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2020-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AUXEL FR (GONDECOURT) coordinator 398˙816.00
2    UNIVERSITE D'ARTOIS FR (ARRAS) participant 98˙538.00

Map

 Project objective

More Electrical Aircraft power distribution systems are increasingly required to operate in harsh environments and increasing voltage (HVDC), including high temperature. The company Auxel (an industrial leader in laminated busbars) & the LSEE Research Laboratory (Electrotechnical Systems and Environment) will conjointly address this topic by developing a technology able to effectively address the challenges of High Voltage, high operating temperature (up to 240°) and controlled lifetime: VILB (Varnished & Impregnated Laminated Busbar) technology. Firstly, VILB is a technological breakthrough as it is based on an entirely new strategy for the insulation of laminated busbars (LBB) (one component of the power distribution systems). Indeed, VILB will replace insulating films, glue and complex assembly processes by a heating press with an impregnation technology using a dielectric resin. This process will make the LBB resistant to higher temperatures (240°) and partial discharge (tiny short circuits appearing during the insulation phase and accelerating the system ageing). Secondly, VILB is a limited risk taking technology as it is inspired by perfectly mature technologies and products widely used for the insulation of electric machines. Thirdly, the potential VILB impacts are way beyond aeronautical sector: VILB could be duplicated in many other applications such as power modules, converters, automotive Industry, etc. Finally, thanks to this simplified process, in comparison with the traditional thermally bonded insulating film on heating press process, the implementation of VILB technology for busbars will result in higher productivity (x 5), lower production costs (from - 10% to - 30%) and energy savings (- 80%). During the project, the busbar will be designed, its performance simulated, the prototypes tested to TRL6 demonstration ending with a “TRL 7 ready” prototype. AUXEL and the LSEE have already co-patented VILB with 2 patent pending applications.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VILB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VILB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.6.)

FAVIT (2019)

FEASIBILITY ANALYSIS OF INNOVATIVE PRACTICES IN VIRTUAL TESTING METHODS FOR AIRCRAFT CERTIFICATION

Read More  

ADDIMOT (2019)

ADDitively manufactured limited angle torque MOTor for Smart Active Inceptors

Read More  

TecALSens (2018)

Advanced Load Sensing technology for Aerospace Application

Read More