Opendata, web and dolomites

PhotoArM SIGNED

Directed Evolution of Photoredox Powered Artificial Metalloenzymes for Stereodivergent Catalysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PhotoArM project word cloud

Explore the words cloud of the PhotoArM project. It provides you a very rough idea of what is the project "PhotoArM" about.

generally    metalloenzymes    give    difficult    selectivity    metallophotoredox    catalyst    powerful    synthetic    mutagenesis    pocket    efficient    intermediates    monocyclic    mild    intramolecular    groups    complementarity    acid    reactivity    transition    turnover    compound    protein    tools    independently    artificial    sp3    secondary    diastereoisomers    cross    induce    sensitive    light    enzyme    nickel    derivative    synthetically    photocatalyst    activate    site    repertoire    racemic    sphere    coupling    bromoalkane    stereocentres    levels    reactive    lactam    residues    attractive    full    scaffold    functionalised    nearby    stereodivergent    valuable    beta    impressive    shell    beneficially    subsequently    abundant    display    functional    chemistry    created    reaction    dramatically    sustainable    methodology    catalytic    pharmaceutical    potentially    substrates    quantity    catalysis    concomitantly    small    metal    active    inside    drawback    photoredox    interface    suitably    anchoring    hold    inert    reactions    amino    unexplored    though    linear    emerged   

Project "PhotoArM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT BASEL 

Organization address
address: PETERSPLATZ 1
city: BASEL
postcode: 4051
website: www.unibas.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT BASEL CH (BASEL) coordinator 191˙149.00

Map

 Project objective

Artificial metalloenzymes have recently emerged as powerful tools to address the ever-growing requirements of chemistry to become more efficient and sustainable. This methodology involves anchoring a reactive transition metal catalyst within a protein to exploit the secondary coordination sphere created around the new active site, which can induce selectivity in reactions and improve turnover numbers. Concomitantly, photoredox and metallophotoredox catalysis, where a small quantity of a light sensitive compound allows non-traditional reactivity though open shell reactive intermediates, has also developed dramatically in recent years. The impressive reaction repertoire is especially synthetically attractive due to the mild conditions required and the ability to activate abundant and generally more inert functional groups. However, the current drawback to this methodology is the high levels of control needed to give the reactions their full synthetic potential. This is where the two fields display complementarity with an unexplored interface: Photoredox Artificial Metalloenzymes. By anchoring a nickel catalyst inside an enzyme pocket with a nearby photocatalyst, it should be possible to control catalytic reactivity by mutagenesis of residues in the secondary coordination sphere. In the proposed case of an sp3-sp3 cross-coupling reaction between a racemic amino acid derivative and bromoalkane, this could potentially allow control over both new stereocentres independently to achieve stereodivergent catalysis. It is subsequently proposed that this methodology could be adapted to include intramolecular cross-coupling reactions, which would beneficially allow access to the valuable monocyclic β-lactam scaffold from suitably functionalised linear substrates. If possible, this may allow efficient access to diastereoisomers potentially difficult to access by other means, which may hold unexplored pharmaceutical potential.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHOTOARM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHOTOARM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MAGIMOX (2019)

Nanometre scale imaging of magnetic perovskite oxide thin films using scanning transmission electron microscopy

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More  

Cartesian Networks (2020)

Cartesian Networks in Early Modern Europe: A Quantitative and Interdisciplinary Approach

Read More