Opendata, web and dolomites


Directed Evolution of Photoredox Powered Artificial Metalloenzymes for Stereodivergent Catalysis

Total Cost €


EC-Contrib. €






 PhotoArM project word cloud

Explore the words cloud of the PhotoArM project. It provides you a very rough idea of what is the project "PhotoArM" about.

catalysis    give    anchoring    functionalised    nickel    reactivity    turnover    pharmaceutical    synthetically    metallophotoredox    independently    potentially    inert    lactam    sphere    generally    monocyclic    residues    shell    light    inside    catalyst    scaffold    substrates    interface    active    transition    valuable    metal    emerged    unexplored    reactive    enzyme    diastereoisomers    amino    dramatically    attractive    mutagenesis    created    chemistry    quantity    reaction    drawback    reactions    induce    repertoire    tools    abundant    sustainable    intramolecular    metalloenzymes    acid    secondary    methodology    groups    beneficially    display    mild    intermediates    impressive    derivative    levels    cross    photoredox    small    complementarity    photocatalyst    though    subsequently    bromoalkane    protein    efficient    selectivity    hold    compound    linear    sp3    synthetic    beta    functional    sensitive    powerful    artificial    concomitantly    coupling    stereodivergent    full    pocket    racemic    nearby    difficult    suitably    activate    stereocentres    catalytic    site   

Project "PhotoArM" data sheet

The following table provides information about the project.


Organization address
address: PETERSPLATZ 1
city: BASEL
postcode: 4051

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT BASEL CH (BASEL) coordinator 191˙149.00


 Project objective

Artificial metalloenzymes have recently emerged as powerful tools to address the ever-growing requirements of chemistry to become more efficient and sustainable. This methodology involves anchoring a reactive transition metal catalyst within a protein to exploit the secondary coordination sphere created around the new active site, which can induce selectivity in reactions and improve turnover numbers. Concomitantly, photoredox and metallophotoredox catalysis, where a small quantity of a light sensitive compound allows non-traditional reactivity though open shell reactive intermediates, has also developed dramatically in recent years. The impressive reaction repertoire is especially synthetically attractive due to the mild conditions required and the ability to activate abundant and generally more inert functional groups. However, the current drawback to this methodology is the high levels of control needed to give the reactions their full synthetic potential. This is where the two fields display complementarity with an unexplored interface: Photoredox Artificial Metalloenzymes. By anchoring a nickel catalyst inside an enzyme pocket with a nearby photocatalyst, it should be possible to control catalytic reactivity by mutagenesis of residues in the secondary coordination sphere. In the proposed case of an sp3-sp3 cross-coupling reaction between a racemic amino acid derivative and bromoalkane, this could potentially allow control over both new stereocentres independently to achieve stereodivergent catalysis. It is subsequently proposed that this methodology could be adapted to include intramolecular cross-coupling reactions, which would beneficially allow access to the valuable monocyclic β-lactam scaffold from suitably functionalised linear substrates. If possible, this may allow efficient access to diastereoisomers potentially difficult to access by other means, which may hold unexplored pharmaceutical potential.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PHOTOARM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PHOTOARM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More