Opendata, web and dolomites

CM_GF SIGNED

Biological relevance of the multiple infection unit as a novel target for antiviral development

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CM_GF" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET zu LUEBECK 

Organization address
address: RATZEBURGER ALLEE 160
city: LUBECK
postcode: 23562
website: http://www.uni-luebeck.de/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 246˙669 €
 EC max contribution 246˙669 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-GF
 Starting year 2020
 Duration (year-month-day) from 2020-02-01   to  2023-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET zu LUEBECK DE (LUBECK) coordinator 246˙669.00
2    UNIVERSITY OF MICHIGAN THE REGENTS OF THE UNIVERSITY OF MICHIGAN US (ANN ARBOR) partner 0.00

Map

 Project objective

The last decade of research in enteric virus infection produced a body of compelling evidences that challenged the paradigm of the single infection unit, where a single virus is able to elicit infection of a target cell. Instead, observational studies of infection in vivo and in vitro suggest that enteric viruses travel in groups: in vesicles with inverted phosphatidylserine topology or at the surface of commensal bacteria. It has been proposed that both strategies increase locally the viral multiplicity of infection, thus favoring viral complementation of defective genomes. There is a lack of knowledge on the biological relevance of the so-called multiple infection unit (MIU) as it has not been mechanistically studied in physiologically relevant model of the GI tract. In addition, the MIU is a strategy employed by all the enteric viruses so far tested, therefore it might represent a valuable target for the design of broad spectrum therapeutics. The central hypothesis of this project is that targeting MIU will inhibit enteric virus infection ex vivo and in vivo. My model of enteric virus is human norovirus (HNoV) for its clinical relevance and for its well described interaction with commensal bacteria. In work package (WP)1, to gain insight on the biological relevance of MIU in ex vivo physiologically relevant models, I will test the hypothesis that MIU increases HNoV infection in human intestinal enteroids. In aim 2, I will develop an in vitro screening platform by pulldown assay with His-tagged HNoV virus-like particles to i) screen for small molecules inhibitors of the infection and ii) identify bacterial species that are bound to HNoV in stool derived from healthy volunteer and diseased patients (i.e. inflammatory bowel disease, Crohn) . In aim 3, in order to provide evidence that targeting MIU blocks viral infection, I will test the efficacy of the small molecules identified in aim 2 in the ex-vivo model established in aim 1 and/or in-vivo, in a murine model.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CM_GF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CM_GF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ASIQS (2019)

Antiferromagnetic spintronics investigated by quantum sensing techniques

Read More  

PRISME (2019)

PRogram for ISolation Manufacturing in Europe (PRISME)

Read More  

LIGHTMATT-EXPLORER (2019)

Experimental determination of the paraxial-vectorial limit of light-matter interactions

Read More