Opendata, web and dolomites

FLAY SIGNED

Flavor Anomalies and the origin of the Yukawa couplings

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FLAY" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT ZURICH 

Organization address
address: RAMISTRASSE 71
city: ZURICH
postcode: 8006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 2˙318˙750 €
 EC max contribution 2˙318˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT ZURICH CH (ZURICH) coordinator 2˙318˙750.00

Map

 Project objective

Recent experimental results in flavor physics exhibit deviations from the Standard Model predictions that are growing with time, both as far as statistical significance and as far as internal consistency. Understanding the origin of this phenomenon, the so-called “flavor anomalies”, is of paramount importance for a deeper understanding of fundamental interactions. As recently shown by the PI and collaborators, this phenomenon is likely to be intimately related to the long-standing “flavor problem”, or the origin of the hierarchical pattern of quark and lepton mass matrices observed in Nature. The goal of this project is to shed light on both these issues, providing a solution to old and recent puzzles in flavor physics. We propose to address these questions via an original bottom-up approach, based on Effective Field Theory methods and simplified models, combined with new top-down ideas about the ultraviolet completion of the Standard Model. On the phenomenological side, the proposed bottom-up approach will allow us to exploit with the highest accuracy all the available and expected experimental data. It will allow us to take into account both low- and high-energy observables, as well as both quark and lepton sectors. These results will constitute the basis for the theoretical investigation of a new class of Standard Model extensions not considered so far. The latter are based on new ideas, such as flavor non-universal gauge interactions, that imply a change of paradigm in theoretical high-energy physics: the origin of the flavor hierarchies plays a central role in revealing the ultraviolet completion of the Standard Model. Combining a bottom-up approach to flavor-physics data with top-down ideas on the origin of the flavor hierarchies, this project has the potential to lead to a major advancement in fundamental physics.

 Publications

year authors and title journal last update
List of publications.
2020 Javier Fuentes-Martín, Gino Isidori, Julie Pagès, Kei Yamamoto
With or without U(2)? Probing non-standard flavor and helicity structures in semileptonic B decays
published pages: 135080, ISSN: 0370-2693, DOI: 10.1016/j.physletb.2019.135080
Physics Letters B 800 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLAY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FLAY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MINGRAFT (2020)

Biomineralizing coatings for maxillofacial implants

Read More  

INTERACT (2019)

Phylogenetic association mapping and its application to secondary metabolite variation in Brassicaceae species

Read More  

OPIOIDREWARD (2019)

How distress alters opioid drug effects and abuse liability

Read More