Opendata, web and dolomites

RegRNA SIGNED

Mechanistic principles of regulation by small RNAs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RegRNA project word cloud

Explore the words cloud of the RegRNA project. It provides you a very rough idea of what is the project "RegRNA" about.

employs    binding    modes    expression    gene    direct    shed    mature    basis    underlying    site    principles    regulation    rho    alternative    deciphered    regulatory    srnas    manipulation    pathogenic    interfering    cellular    termination    ways    detection    pairs    translation    examples    mechanism    regulators    biology    pairing    manipulate    few    regulated    base    revealing    exposing    cleavage    transcriptional    feasibility    light    preliminary    innovative    advantage    rna    elongation    2400    exerting    transcription    synthetic    assisting    post    srna    accumulating    vivo    transcriptome    escherichia    circuits    certain    ribosome    alluded    power    suggest    dependent    effect    blocking    trans    contexts    circuitry    small    mainly    integration    rnas    ril    seq    employed    regulating    technologies    molecular    global    latter    perceived    pausing    implications    intriguing    map    function    bacteria    versatile    network    coli    rnase   

Project "RegRNA" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙278˙125 €
 EC max contribution 2˙278˙125 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 2˙278˙125.00

Map

 Project objective

Small RNAs (sRNAs) are major regulators of gene expression in bacteria, exerting their regulation in trans by base pairing with target RNAs. Traditionally, sRNAs were considered post-transcriptional regulators, mainly regulating translation by blocking or exposing the ribosome binding site. However, accumulating evidence suggest that sRNAs can exploit the base pairing to manipulate their targets in different ways, assisting or interfering with various molecular processes involving the target RNA. Currently there are a few examples of these alternative regulation modes, but their extent and implications in the cellular circuitry have not been assessed. Here we propose to take advantage of the power of RNA-seq-based technologies to develop innovative approaches to address these challenges transcriptome-wide. These approaches will enable us to map the regulatory mechanism a sRNA employs per target through its effect on a certain molecular process. For feasibility we propose studying three processes: RNA cleavage by RNase E, pre-mature Rho-dependent transcription termination, and transcription elongation pausing. Finding targets regulated by sRNA manipulation of the two latter processes would be especially intriguing, as it would suggest that sRNAs can function as gene-specific transcription regulators (alluded to by our preliminary results). As a basis of our research we will use the network of ~2400 sRNA-target pairs in Escherichia coli, deciphered by RIL-seq (a method we recently developed for global in vivo detection of sRNA targets). Revealing the regulatory mechanism(s) employed per target will shed light on the principles underlying the integration of distinct sRNA regulation modes in specific regulatory circuits and cellular contexts, with direct implications to synthetic biology and pathogenic bacteria. Our study may change the way sRNAs are perceived, from post-transcriptional to versatile regulators that apply different regulation modes to different targets.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REGRNA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "REGRNA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

DistMaP (2019)

Distributed and Massively Parallel Graph Algorithms

Read More  

METAPoF (2019)

Metaphor as the Purpose of the Firm

Read More  

PArtCell (2020)

Physiologically Crowded Artificial Cells for Relevant Drug Screens

Read More