Opendata, web and dolomites

ISOTOPEST SIGNED

ISOtope TOols for assessing PESticide faTe in the environment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ISOTOPEST" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT DE BARCELONA 

Organization address
address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007
website: http://www.ub.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 160˙932 €
 EC max contribution 160˙932 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-11-01   to  2021-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT DE BARCELONA ES (BARCELONA) coordinator 160˙932.00

Map

 Project objective

Assessing the source and fate of pesticides in the environment is vital for improving European water management policies and remediation actions. Although compound specific isotope analysis (CSIA) has proved to be a valuable tool to identify sources and track and quantify pollutant degradation in environmental systems, its application to pesticides is still emerging. There are currently some analytical challenges that restrict the possibilities to exploit the full potential of CSIA in pesticides for environmental applications, mainly related with low pesticide concentrations in environmental matrices. The first task of this project aims to overcome these barriers by optimizing extraction and analytical methods for measuring isotope ratios in an unexplored pesticide of high environmental concern: the organochlorine insecticide methoxychlor. Understanding the processes of transformation of pesticides and their associate isotope fractionations is crucial to give a sound base on CSIA application in real case studies. Nevertheless, the database of isotope fractionations associated to different transformation reactions for each pesticide is extremely incomplete. The second task of this project aims to increase this database by performing laboratory experiments for assessing biodegradation of methoxychlor and the herbicide atrazine. Finally, to take the next step and bring CSIA of pesticides to the field, the third task of this project is focused on application of CSIA in two contaminated sites for assessing the fate of the target pesticides (atrazine and methoxychlor) and their metabolites. This will provide a further demonstration of the options of CSIA in the evaluation of strategies for natural or induced attenuation, and to trace the sources, sinks and fate of pesticides in the environment. This project will thus contribute to the competitiveness of Europe in environmental monitoring, risk assessment and contamination mitigating concepts of pesticides.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ISOTOPEST" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ISOTOPEST" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

SRIMEM (2018)

Super-Resolution Imaging and Mapping of Epigenetic Modifications

Read More  

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More