Opendata, web and dolomites

UltimateRB SIGNED

Direct numerical simulations towards ultimate turbulence

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "UltimateRB" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT TWENTE 

Organization address
address: DRIENERLOLAAN 5
city: ENSCHEDE
postcode: 7522 NB
website: www.utwente.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙499˙375 €
 EC max contribution 1˙499˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT TWENTE NL (ENSCHEDE) coordinator 1˙499˙375.00

Map

 Project objective

Turbulent thermal convection plays an important role in a wide range of natural and industrial settings, from astrophysical and geophysical flows to process engineering. The paradigmatic representation of thermal convection is Rayleigh-Bénard (RB) flow in which a layer of fluid is heated from below and cooled from above. A major challenge is to determine the scaling relation of the Nusselt number (Nu), i.e. the dimensionless heat transport, with the Rayleigh number (Ra), which is the dimensionless temperature difference between the two plates, expressed as Nu∼Ra^γ. Theory predicts that the scaling exponent γ increases for extremely strong driving when the boundary layers transition from laminar to turbulent. Understanding the transition to this so-called ‘ultimate’ regime is crucial since an extrapolation of results from lab-scale experiments and simulations to astro- and geophysical phenomena becomes meaningless when the transition to this ‘ultimate’ state is not understood. So far, there is no consensus among experimental efforts for obtaining the ‘ultimate’ regime. We propose using direct numerical simulations (DNS) to gain a better understanding of the transition towards the ‘ultimate’ regime. While obtaining ‘ultimate’ thermal convection in simulations has been elusive, new developments make this feasible now. The benefit of simulations is that they allow full access to the flow and temperature fields, while all boundary conditions are set exactly and independently. This allows us to test various physical effects at full dynamic similarity. To trigger the excitation of the ‘ultimate’ regime at lower Ra than in standard small aspect ratio cells, we want to study the effect of roughness, additional shear, and large domains in which a stronger flow can develop than in confined small aspect ratio cells that are traditionally considered. The addition of rotation will be studied to disentangle the complicated effect of rotation on high Ra number thermal convection.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ULTIMATERB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ULTIMATERB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

EffectiveTG (2018)

Effective Methods in Tame Geometry and Applications in Arithmetic and Dynamics

Read More  

ARCTIC (2020)

Air Transport as Information and Computation

Read More