Opendata, web and dolomites

TargetDUBs SIGNED

Targeting ubiquitin processing in cancer and fibrosis: novel probes for the Ubiquitin Carboxy-Terminal Hydrolases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TargetDUBs project word cloud

Explore the words cloud of the TargetDUBs project. It provides you a very rough idea of what is the project "TargetDUBs" about.

effect    itself    prevent    alzheimer    degrade    discovery    driving    ubiquitin    anticipate    types    deubiquitination    prostate    proteins    headed    lung    drug    endogenous    irreversible    experiments    hydrolase    shown    deubiquitinases    overcome    therapeutic    biology    diseases    inhibitors    regulation    cells    fibrosis    emerged    vitro    l1    protacs    direct    explore    protein    profiling    cellular    molecules    unmet    neurodegenerative    limitations    models    proteomics    dubs    probes    fundamental    breast    synthesize    tissues    therapeutics    ligase    hundreds    e3    selectively    abundant    uchl1    ub    disease    quantitatively    ovarian    small    paradigm    identification    poorly    vivo    colorectal    quantification    point    healthy    parkinson    regulated    terminal    carboxy    functions    cancers    realize    almost    tool    actual    mechanism    proteasome    simultaneously    substrates    uch    starting    proteome    removal    brain    dysregulation    pathological    family    assisting    enzymes    cancer    liver    selective    modification    degradation   

Project "TargetDUBs" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-08-01   to  2021-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 224˙933.00

Map

 Project objective

Modification of proteins with ubiquitin (Ub), itself a small protein, is a fundamental mechanism involved in regulation of almost all cellular functions. There are hundreds of enzymes involved in the addition or removal of Ub, and this system has emerged as an important drug target in many diseases. Ubiquitin Carboxy-Terminal Hydrolase L1 (UCHL1) is a member of the UCH family of deubiquitinases (DUBs), and is the most abundant protein in the brain. UCHL1 dysregulation has been shown to be associated with neurodegenerative diseases including Alzheimer’s disease, Parkinson’s disease, various types of cancers (colorectal, breast, prostate, ovarian, and lung cancers), and liver fibrosis. However, its actual functions, endogenous substrates, and how its activity is regulated in vivo, both in pathological and healthy tissues, remain poorly understood. To overcome these limitations and to realize the unmet therapeutic opportunities, I will develop and synthesize activity-based probes to selectively target UCHL1, and will apply them to the identification and quantification of UCH enzymes in several cancer cells using activity-based protein profiling. This will provide a unique tool to explore a wide range of DUBs and UCH biology in cells, as well as a starting point to develop selective inhibitors and potential therapeutics. Simultaneously, I will develop and synthesize irreversible PROTACs to selectively degrade UCHL1 and will apply them to quantitatively assess their effect on UCH enzymes in several in vitro cancer and fibrosis models using proteome-wide proteomics experiments. PROTACs are two-headed molecules capable to direct E3 ubiquitin ligase activity towards the target protein, driving its degradation by proteasome. I anticipate that novel PROTACs based on inhibitors that target UCHL1 would provide a unique tool to degrade UCHL1 and prevent deubiquitination, assisting discovery of novel UCHL1 substrates and providing a new paradigm for targeting UCHL1 in disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TARGETDUBS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TARGETDUBS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More