Opendata, web and dolomites

SupraFixCO2 SIGNED

Supramolecular Catalysis for Chemofixation and Electroreduction of CO2

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SupraFixCO2 project word cloud

Explore the words cloud of the SupraFixCO2 project. It provides you a very rough idea of what is the project "SupraFixCO2" about.

frontiers    co2    weak    innovatively    chemofixation    employ    physics    significantly    electrochemistry    binding    water    hydrophobic    fuels    subnanometer    space    mechanism    decide    molecule    extensively    nanophotonics    chemofixating    threatening    think    added    centre    reuse    lots    department    efforts    scientists    human    life    tend    situ    reduce    greenhouse    soluble    producing    technique    cucurbit    mirror    interdisciplinary    marrying    believe    polar    residual    carbonates    limit    selectivity    harsh    cavity    chemistry    fuel    dioxide    emission    devoted    plan    electroreducing    guest    supramolecular    nanoparticle    catalysis    global    released    first    enter    strategy    interests    warming    efficiency    nanocavity    attract    purpose    co    media    catalyst    enhanced    attentions    colleagues    uril    science    macrocyclic    incorporation       promoted    closely    reactant    box    cb    host    electroreduction    chemicals    aqueous    encapsulate    gas    catalysts    carbon    cyclic    catalytic    inherently    planet    firstly    mild    constructing   

Project "SupraFixCO2" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-15   to  2021-04-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 224˙933.00

Map

 Project objective

Global warming has become one of the global concerns which is threatening all life on our planet. As the greenhouse gas, carbon dioxide (CO2) has been extensively released by human activities. To reduce CO2 emission, one promising strategy is to reuse CO2 for producing value-added chemicals or fuels. For this purpose, many efforts have been devoted in constructing effective catalysts for CO2 utilization. However, many problems still limit their application, such as weak CO2 binding to the catalytic centre, low efficiency and selectivity, harsh catalytic conditions, etc. To address these challenges, we decide to think out of box. By marrying supramolecular chemistry with CO2 utilization, we aim to develop new systems of supramolecular catalysis for chemofixation and electroreduction of CO2. To this end, we plan to innovatively employ cucurbit[n]uril, a kind of water-soluble macrocyclic host, to encapsulate a catalyst or a reactant within its hydrophobic nanocavity. After first guest incorporation, CO2 as a non-polar gas molecule may strongly tend to enter the residual hydrophobic space within CB[n]'s cavity. Through such enhanced CO2 binding, supramolecular catalysis for chemofixating CO2 into cyclic carbonates and electroreducing CO2 to CO fuel could be significantly promoted. High efficiency and selectivity, and mild catalytic conditions in aqueous media could be also achieved. Furthermore, the catalytic process and mechanism will be in situ studied by a nanoparticle-on-mirror technique in a subnanometer level. In this way, supramolecular catalysis for CO2 utilization could be firstly developed. This proposed project is inherently an interdisciplinary research, therefore we will work closely with colleagues from our department and Department of Physics. We do believe that this research will attract lots of interests and attentions from scientists in the frontiers of supramolecular chemistry, CO2 utilization, catalytic science, electrochemistry and nanophotonics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUPRAFIXCO2" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUPRAFIXCO2" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More