Opendata, web and dolomites

SupraFixCO2 SIGNED

Supramolecular Catalysis for Chemofixation and Electroreduction of CO2

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SupraFixCO2 project word cloud

Explore the words cloud of the SupraFixCO2 project. It provides you a very rough idea of what is the project "SupraFixCO2" about.

dioxide    mirror    efficiency    global    harsh    chemofixation    greenhouse    fuels    electroreducing    mild    added    scientists    nanoparticle    think    electrochemistry    box    firstly    hydrophobic    innovatively    carbon    reuse    producing    efforts    employ    water    limit    soluble    plan    catalyst    released    cb    co    nanophotonics    cavity    molecule    purpose    subnanometer    human    interests    threatening    closely    reduce    attentions    constructing    devoted    electroreduction    physics    technique    planet    space    warming    host    nanocavity    chemistry    catalysts    macrocyclic    carbonates    guest    selectivity    catalysis    reactant       strategy    first    science    residual    promoted    emission    binding    gas    cyclic    supramolecular    marrying    believe    life    fuel    chemofixating    enter    decide    encapsulate    lots    enhanced    centre    significantly    mechanism    interdisciplinary    polar    frontiers    cucurbit    tend    situ    inherently    colleagues    attract    incorporation    extensively    uril    aqueous    catalytic    department    weak    co2    media    chemicals   

Project "SupraFixCO2" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-15   to  2021-04-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 224˙933.00

Map

 Project objective

Global warming has become one of the global concerns which is threatening all life on our planet. As the greenhouse gas, carbon dioxide (CO2) has been extensively released by human activities. To reduce CO2 emission, one promising strategy is to reuse CO2 for producing value-added chemicals or fuels. For this purpose, many efforts have been devoted in constructing effective catalysts for CO2 utilization. However, many problems still limit their application, such as weak CO2 binding to the catalytic centre, low efficiency and selectivity, harsh catalytic conditions, etc. To address these challenges, we decide to think out of box. By marrying supramolecular chemistry with CO2 utilization, we aim to develop new systems of supramolecular catalysis for chemofixation and electroreduction of CO2. To this end, we plan to innovatively employ cucurbit[n]uril, a kind of water-soluble macrocyclic host, to encapsulate a catalyst or a reactant within its hydrophobic nanocavity. After first guest incorporation, CO2 as a non-polar gas molecule may strongly tend to enter the residual hydrophobic space within CB[n]'s cavity. Through such enhanced CO2 binding, supramolecular catalysis for chemofixating CO2 into cyclic carbonates and electroreducing CO2 to CO fuel could be significantly promoted. High efficiency and selectivity, and mild catalytic conditions in aqueous media could be also achieved. Furthermore, the catalytic process and mechanism will be in situ studied by a nanoparticle-on-mirror technique in a subnanometer level. In this way, supramolecular catalysis for CO2 utilization could be firstly developed. This proposed project is inherently an interdisciplinary research, therefore we will work closely with colleagues from our department and Department of Physics. We do believe that this research will attract lots of interests and attentions from scientists in the frontiers of supramolecular chemistry, CO2 utilization, catalytic science, electrochemistry and nanophotonics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUPRAFIXCO2" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUPRAFIXCO2" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More  

INFANTPATTERNS (2019)

Development of kinematic and muscle patterns in preterm infants

Read More