Opendata, web and dolomites

OLIGOARCHIVE SIGNED

Oligoarchive - Intelligent DNA Storage for Archival

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "OLIGOARCHIVE" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 2˙994˙970 €
 EC max contribution 2˙994˙970 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-2018-2019-2020-01
 Funding Scheme RIA
 Starting year 2019
 Duration (year-month-day) from 2019-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 990˙714.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 981˙600.00
3    EURECOM FR (BIOT) participant 525˙711.00
4    HELIXWORKS TECHNOLOGIES LIMITED IE (CORK) participant 496˙945.00

Map

 Project objective

The ``digital universe' of all known data worldwide is expected to grow to 250 Zettabytes by 2025. Unfortunately, all current storage media face fundamental limitations that threaten our ability to store, much less process, all this data. Hard Disk Drives (HDD) suffer from well-known scaling issues that have resulted in a meager 16% annual density improvement over the past decade compared to the 60% rate of data growth. Tape drives suffer from media obsolescence, as data stored in tape has to be continuously migrated to deal with technology upgrades. If we are to preserve even just a fraction of the world's data, we are in desperate need of a radically new storage media with substantially better density and durability characteristics. In this proposal, we focus on one such media that has received limited attention recently -synthetic Deoxyribonucleic acid (DNA). Using DNA as a digital storage media has multiple advantages. First, DNA is an extremely dense storage medium. Second, DNA can last several centuries; HDD and tape have life times of five and thirty years. Third, technology used for storing data on DNA (synthesis) and retrieving data back from DNA (sequencing) have eternal relevance; as long as there is life on earth, there will always be the need to synthesize and sequence DNA. Fourth, there is the potential to process the data stored in DNA using biomolecular mechanisms. Doing so is substantially faster and requires much less energy than traditional computing. Despite such benefits, DNA storage and DNA data processing are new areas of research. In this proposal, we outline a research agenda which will develop the fundamental technologies needed to build an intelligent DNA storage system. The resulting prototype system will support the full cycle of encoding data, synthesize it as DNA and read it back through sequencing. It will optimally store a variety of different types of data and enable near-data processing in the storage.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "OLIGOARCHIVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "OLIGOARCHIVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

MAX-BAS (2019)

Magnetic cross-modal brain activity scanner MAX-BAS

Read More  

MAFIn (2019)

Module for Aberration Correction and Fast Volumetric Imaging in a Light Sheet Fluorescence Microscope

Read More  

EDRA (2019)

Hardware-Assisted Decoupled Access Execution on the Digital Market: The EDRA Framework

Read More