Opendata, web and dolomites

CREATE SIGNED

Crafting Complex Hybrid Materials for Sustainable Energy Conversion

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CREATE project word cloud

Explore the words cloud of the CREATE project. It provides you a very rough idea of what is the project "CREATE" about.

pb    versatility    ease    bridge    generation    questions    mixture    deposition    films    decoupling    popularity    revolutionary    tackle    host    dual    exploration    lack    sources    combining    race    vacuum    energy    components    sustainable    controllably    incompatible    easily    film    materials    cell    overcome    gap    pbhp    rely    recombination    completely    leap    ratio    scientific    expertise    defect    insights    carrier    nature    volatility    regarding    solar    paramount    efficiencies    families    pld    cells    interplay    halide    unprecedented    describe    worldwide    perovskites    tolerant    distracted    conversion    determined    fundamental    techniques    inorganic    optical    stability    laser    hybrid    full    pdld    stoichiometric    toxic    free    hurdle    stable    scattering    overlooked    grow    phenomena    solubility    pulsed    decouple    influence    solution    gained    extensive    fabrication    uv    ir    synthesis    halides    reproducibly    layer    organic    with    discovery   

Project "CREATE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT TWENTE 

Organization address
address: DRIENERLOLAAN 5
city: ENSCHEDE
postcode: 7522 NB
website: www.utwente.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙750˙000 €
 EC max contribution 1˙750˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT TWENTE NL (ENSCHEDE) coordinator 1˙750˙000.00

Map

 Project objective

With an unprecedented rise in solar cell efficiencies and ease of fabrication, hybrid lead halide perovskites (PbHP) have gained worldwide popularity. However, these materials still rely on the use of toxic Pb and lack of long-term stability. Moreover, distracted by a race for higher conversion efficiencies, the development of in-vacuum deposition techniques to reproducibly and controllably grow these hybrid films has been highly overlooked. This is now the main hurdle for the full exploration of Pb-free and stable hybrid halides, which might not be as defect tolerant or easily produced by solution process as PbHP. Therefore, a revolutionary method allowing the discovery of new sustainable complex hybrid materials is now, more than ever, of paramount importance. Here I describe a completely new approach that allows stoichiometric and layer-by-layer in-vacuum deposition of wide families of organic-inorganic materials, and their mixture in any pre-determined ratio. To overcome the specific challenges of hybrid film growth (incompatible volatility and solubility) I propose Pulsed Dual-Laser Deposition (PDLD) to decouple the deposition of the inorganic and organic sources with two distinct laser sources, a high energy (UV) and a low energy (IR), all in one vacuum system. Only this decoupling will allow the control and versatility to bridge the hybrid materials discovery gap and to tackle open scientific questions regarding the interplay between the organic and inorganic components, defect nature and their influence on optical properties, carrier scattering and recombination phenomena. Combining these fundamental insights with controlled growth, will enable the design of a new generation of stable and non-toxic hybrid films. My extensive experience in in-vacuum materials synthesis for solar cells, supported by the unique PLD expertise at the host institution will enable a leap in the discovery and understanding of hybrid materials for solar energy conversion and beyond.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CREATE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CREATE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

PGErepro (2019)

How to break Mendel’s laws? The role of sexual conflict in the evolution of unusual transmission genetics

Read More