Opendata, web and dolomites

NanoBiOptics SIGNED

A Synthetic Biology Approach to Developing Optical NanoAnalytics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoBiOptics project word cloud

Explore the words cloud of the NanoBiOptics project. It provides you a very rough idea of what is the project "NanoBiOptics" about.

found    molecular    generation    revolution    dna    nanosensors    nucleic    sense    basis    emissions    tuning    bio    unnatural    bioengineering    advantages    transparent    nano    rely    bioanalyte    infrared    limitations    nanosensor    fluorophores    engineering    detection    wavelengths    complement    synergy    tissue    envisions    biological    disadvantages    unlike    nanomaterials    community    walled    limited    crispr    intractable    unfortunately    evolution    equipped    benefit    realize    sensors    unparalleled    techniques    sensing    hybrids    vivo    fluorescence    lack    detect    absorption    protein    tuned    optical    nature    nanobioptic    indefinitely    previously    near    materials    continuous    lifetimes    sensitivities    interactions    synthetic    demonstrating    posed    platforms    nanotubes    carbon    complementary    chemistry    limits    single    sciences    imaging    acid    artificial    biomolecules    overcome    create    billions    guided    photostable    recognition    visible    engineers    molecule    biology    overlap    unfounded    directed    circumvent    biologist    physical    analytes   

Project "NanoBiOptics" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙499˙495 €
 EC max contribution 1˙499˙495 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2025-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 1˙499˙495.00

Map

 Project objective

Bioengineering is the synthetic biologist’s approach to engineering materials. It allows researchers to overcome billions of years of evolution to create unnatural biomolecules equipped with interactions unfounded in nature. Biomolecules offer unparalleled molecular recognition that can be tuned by engineers to create highly specific sensors. Unfortunately, biology has its limits; many biological optical sensors rely on fluorophores with limited lifetimes and visible emissions that overlap with tissue absorption. Unlike these fluorophores, single-walled carbon nanotubes benefit from fluorescence that is indefinitely photostable, demonstrating sensitivities that can detect analytes down to the single molecule. Their near-infrared wavelengths are also transparent to tissue absorption, allowing for continuous in vivo sensing. Unfortunately, these nanomaterials lack the molecular recognition biology has to offer.

In a sense, the advantages and disadvantages posed by the fields of bio- and nano-materials engineering are highly complementary. This proposal envisions a new generation of NanoBiOptic devices – devices that exploit the synergy of nano-bio hybrids – for sensing applications. We aim to bring to the nanosensor community what directed evolution has brought to chemistry; a guided approach to tuning interactions. We apply bioengineering techniques, such as artificial nucleic acid design as well as directed evolution, to circumvent current limitations in engineering nanosensors. In demonstrating these techniques, we realize previously intractable optical platforms for bioanalyte detection, as well as a single-molecule basis for imaging DNA-protein interactions, such as those found in CRISPR. Synthetic biology thus has the potential to complement the physical sciences in the engineering of new synthetic optical platforms, enabling a “revolution through evolution” of synthetic nanomaterials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOBIOPTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOBIOPTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More  

E-DURA (2018)

Commercialization of novel soft neural interfaces

Read More