Opendata, web and dolomites

NanoBiOptics SIGNED

A Synthetic Biology Approach to Developing Optical NanoAnalytics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoBiOptics project word cloud

Explore the words cloud of the NanoBiOptics project. It provides you a very rough idea of what is the project "NanoBiOptics" about.

bioanalyte    visible    techniques    overlap    posed    sense    dna    molecular    synergy    overcome    photostable    carbon    equipped    evolution    imaging    analytes    directed    lifetimes    tissue    advantages    lack    biological    unfortunately    nano    billions    fluorophores    biologist    tuning    interactions    unnatural    realize    limitations    wavelengths    synthetic    walled    protein    recognition    optical    sensing    detect    complement    bioengineering    generation    absorption    sensors    biology    disadvantages    demonstrating    nanosensors    circumvent    vivo    basis    hybrids    limited    limits    crispr    engineers    transparent    unlike    detection    materials    complementary    bio    nanotubes    sensitivities    engineering    nanosensor    community    tuned    create    indefinitely    near    nanobioptic    revolution    physical    nature    single    infrared    unfounded    guided    acid    platforms    sciences    intractable    rely    nanomaterials    benefit    artificial    nucleic    chemistry    envisions    found    fluorescence    emissions    biomolecules    continuous    molecule    unparalleled    previously   

Project "NanoBiOptics" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙499˙495 €
 EC max contribution 1˙499˙495 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-STG
 Funding Scheme ERC-STG
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2025-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 1˙499˙495.00

Map

 Project objective

Bioengineering is the synthetic biologist’s approach to engineering materials. It allows researchers to overcome billions of years of evolution to create unnatural biomolecules equipped with interactions unfounded in nature. Biomolecules offer unparalleled molecular recognition that can be tuned by engineers to create highly specific sensors. Unfortunately, biology has its limits; many biological optical sensors rely on fluorophores with limited lifetimes and visible emissions that overlap with tissue absorption. Unlike these fluorophores, single-walled carbon nanotubes benefit from fluorescence that is indefinitely photostable, demonstrating sensitivities that can detect analytes down to the single molecule. Their near-infrared wavelengths are also transparent to tissue absorption, allowing for continuous in vivo sensing. Unfortunately, these nanomaterials lack the molecular recognition biology has to offer.

In a sense, the advantages and disadvantages posed by the fields of bio- and nano-materials engineering are highly complementary. This proposal envisions a new generation of NanoBiOptic devices – devices that exploit the synergy of nano-bio hybrids – for sensing applications. We aim to bring to the nanosensor community what directed evolution has brought to chemistry; a guided approach to tuning interactions. We apply bioengineering techniques, such as artificial nucleic acid design as well as directed evolution, to circumvent current limitations in engineering nanosensors. In demonstrating these techniques, we realize previously intractable optical platforms for bioanalyte detection, as well as a single-molecule basis for imaging DNA-protein interactions, such as those found in CRISPR. Synthetic biology thus has the potential to complement the physical sciences in the engineering of new synthetic optical platforms, enabling a “revolution through evolution” of synthetic nanomaterials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOBIOPTICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOBIOPTICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More