Opendata, web and dolomites

PERTURB SIGNED

Using periodic orbits to quantitatively describe and control 3D fluid turbulence.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PERTURB project word cloud

Explore the words cloud of the PERTURB project. It provides you a very rough idea of what is the project "PERTURB" about.

despite    missing    canonical    walk    rational    stokes    suggests    chemicals    road    equations    automatically    transition    space    theory    20th    phenomenon    act    resemble    combining    machine    solutions    aircraft    viewed    description    drag    remove    mid    heat    energy    express    turbulence    orbits    transport    basis    statistical    turbulent    identification    pipelines    framework    owing    failed    3d    amplification    dimensional    weighted    inaccessible    informative    orbit    contributor    unstable    describe    isolated    almost    libraries    flows    infinite    relies    dissipation    convection    exponential    time    predictive    chaotic    promise    controls    dynamical    navier    dynamically    obits    learning    variational    extensive    industrial    fulfilling    tools    flow    block    error    engineering    exact    efficiencies    steady    fluid    century    instead    chaos    forest    periodic    rationalizing    compute    incomplete    construct    mixing    helps    deterministic    channel   

Project "PERTURB" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙999˙830 €
 EC max contribution 1˙999˙830 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 1˙999˙830.00

Map

 Project objective

Fluid turbulence is of key importance in engineering: it controls the drag on aircraft, is a major contributor to unwanted energy dissipation in pipelines, yet mixing of chemicals relies on it. Despite its importance, our understanding of turbulence is incomplete. Controlling turbulent flows, which would lead to significant efficiencies for industrial applications, remains a challenge.

The recent identification of unstable non-chaotic solutions of the Navier-Stokes equations suggests a promising framework to study the phenomenon. Here turbulence is viewed as a chaotic walk through a forest of exact solutions in the infinite-dimensional state space of the flow equations. While this dynamical systems approach helps rationalizing features of the transition to turbulence, it has so far failed to deliver on the promise it carried since the identification of deterministic chaos in the mid 20th century: To provide a predictive description of turbulence in terms of exact solutions and to act as a rational basis for controlling flows.

The major road block to fulfilling the promise is that we are missing tools to identify enough dynamically relevant exact solutions. These are time-periodic non-chaotic solutions that allow us to express statistical properties of turbulence as a weighted average over periodic orbits. Owing to the exponential error amplification in a chaotic system, periodic obits for 3D flows have been almost inaccessible. Instead, research has focused on isolated steady solutions that resemble features of the flow but are dynamically less informative.

We will remove the road block and construct extensive libraries of periodic orbits for two canonical 3D flows, turbulent convection and channel flow. By combining variational methods with machine learning tools we will automatically compute periodic orbits of the 3D Navier-Stokes equations. Using periodic orbit theory, we will describe and control flow properties including heat transport and turbulent drag.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PERTURB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PERTURB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PonD (2019)

Particles-on-Demand for Multiscale Fluid Dynamics

Read More  

SoftHandler (2019)

Commercial feasibility of an integrated soft robotic system for industrial handling

Read More  

HydroLieve (2018)

A long-lasting non-migrating hydrogel for relieving chronic pain

Read More