Opendata, web and dolomites

PERTURB SIGNED

Using periodic orbits to quantitatively describe and control 3D fluid turbulence.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PERTURB project word cloud

Explore the words cloud of the PERTURB project. It provides you a very rough idea of what is the project "PERTURB" about.

solutions    dynamically    fulfilling    act    dynamical    error    suggests    inaccessible    theory    rationalizing    3d    despite    periodic    exponential    road    libraries    chaotic    orbits    chaos    framework    resemble    express    energy    compute    predictive    exact    steady    infinite    industrial    contributor    efficiencies    canonical    identification    missing    engineering    flow    failed    describe    turbulence    automatically    turbulent    aircraft    construct    fluid    drag    amplification    helps    learning    stokes    incomplete    deterministic    rational    century    promise    time    relies    basis    almost    dimensional    combining    remove    transition    owing    variational    channel    flows    forest    extensive    walk    space    convection    obits    pipelines    machine    equations    navier    heat    instead    mixing    chemicals    controls    dissipation    block    viewed    tools    weighted    orbit    mid    transport    isolated    description    20th    phenomenon    unstable    statistical    informative   

Project "PERTURB" data sheet

The following table provides information about the project.

Coordinator
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE 

Organization address
address: BATIMENT CE 3316 STATION 1
city: LAUSANNE
postcode: 1015
website: www.epfl.ch

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙999˙830 €
 EC max contribution 1˙999˙830 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2025-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE CH (LAUSANNE) coordinator 1˙999˙830.00

Map

 Project objective

Fluid turbulence is of key importance in engineering: it controls the drag on aircraft, is a major contributor to unwanted energy dissipation in pipelines, yet mixing of chemicals relies on it. Despite its importance, our understanding of turbulence is incomplete. Controlling turbulent flows, which would lead to significant efficiencies for industrial applications, remains a challenge.

The recent identification of unstable non-chaotic solutions of the Navier-Stokes equations suggests a promising framework to study the phenomenon. Here turbulence is viewed as a chaotic walk through a forest of exact solutions in the infinite-dimensional state space of the flow equations. While this dynamical systems approach helps rationalizing features of the transition to turbulence, it has so far failed to deliver on the promise it carried since the identification of deterministic chaos in the mid 20th century: To provide a predictive description of turbulence in terms of exact solutions and to act as a rational basis for controlling flows.

The major road block to fulfilling the promise is that we are missing tools to identify enough dynamically relevant exact solutions. These are time-periodic non-chaotic solutions that allow us to express statistical properties of turbulence as a weighted average over periodic orbits. Owing to the exponential error amplification in a chaotic system, periodic obits for 3D flows have been almost inaccessible. Instead, research has focused on isolated steady solutions that resemble features of the flow but are dynamically less informative.

We will remove the road block and construct extensive libraries of periodic orbits for two canonical 3D flows, turbulent convection and channel flow. By combining variational methods with machine learning tools we will automatically compute periodic orbits of the 3D Navier-Stokes equations. Using periodic orbit theory, we will describe and control flow properties including heat transport and turbulent drag.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PERTURB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PERTURB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QLite (2019)

Quantum Light Enterprise

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More