Opendata, web and dolomites


Investigation of carrier multiplication in van der Waals heterostructures for highly efficient solar cells

Total Cost €


EC-Contrib. €






 CAMPVANS project word cloud

Explore the words cloud of the CAMPVANS project. It provides you a very rough idea of what is the project "CAMPVANS" about.

harvesting    van    tested    photoresponse    single    inter    presently    accurate    atomistic    employed    theory    interaction    improvement    interactions    der    manufactured    device    function    efficiency    characterised    electron    layer    tune    junctions    relevance    calibrated    multiple    idea    photovoltaic    opto    functional    designed    gap    conversion    simulator    validity    green    junction    solver    experimental    multiplication    density    formalism    lot    carrier    superlattice    significantly    ab    transport    initio    components    possibility    guidelines    attracting    behaviours    predictions    equilibrium    serve    configuration    vdwh    simulate    solar    thickness    community    waals    optimise    models    photodiodes    ultimate    crystals    dimensional    limit    phonons    precisely    optoelectronic    photons    vdwhs    cascade    performance    data    band    innovative    quantum    scientific    light    heterostructures    collaborators    relying    electrical    cells   

Project "CAMPVANS" data sheet

The following table provides information about the project.


Organization address
address: Raemistrasse 101
postcode: 8092

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-02-15   to  2023-02-14


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Presently, the two-dimensional (2-D) crystals and their van der Waals heterostructures (vdWHs) are attracting a lot of attention from the scientific community due to the unique features that they offer such as the possibility to widely tune their band gap, study strong light-matter interactions at the ultimate thickness limit. These features are of great relevance for the light harvesting applications as in photodiodes and photovoltaic cells. In this project, we propose to optimise the (opto-)electrical and photovoltaic behaviours of these components. The state-of-the-art ab-initio quantum transport solver relying on the density-functional theory and the Non-Equilibrium Green’s Function formalism will be employed to simulate the I-V characteristics of single- and multiple-junction vdWHs as well as their optoelectronic and photoresponse properties. Electron interactions with phonons and photons will be taken into account to ensure very accurate performance predictions. The validity of our models will be tested by comparing our results for vdWH-based devices with experimental data from our collaborators. These results will advance our understanding of the light-matter interaction in the atomistic scale vdWH junctions. We will then investigate whether the innovative idea of using the inter-layer carrier multiplication will lead to significant improvement of the light conversion efficiency of the photovoltaic cells. Novel vdWH-based superlattice photovoltaic cells will be designed and optimised with the precisely calibrated atomistic simulator. The most promising device configuration will serve as reliable design guidelines for our experimental collaborators so that the designed devices can be manufactured and characterised. This project aims to significantly increase the light conversion efficiency of vdWH-based solar cells by enabling the cascade inter-layer carrier multiplication.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CAMPVANS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CAMPVANS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

NPsVLCD (2019)

Natural Product-Inspired Therapies for Leishmaniasis and Chagas Disease

Read More  


Simulations of Topological Phases in Superconducting Circuits

Read More  
lastchecktime (2022-05-18 13:05:20) correctly updated