Opendata, web and dolomites

DeepNOE SIGNED

DeepNOE: Leveraging deep learning for protein structure solving at ultra-high resolution on the basis of NMR measurements with exact nuclear Overhauser enhancement

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DeepNOE project word cloud

Explore the words cloud of the DeepNOE project. It provides you a very rough idea of what is the project "DeepNOE" about.

simultaneously    data    spectra    noesy    days    crystallization    contrast    automates    professor    time    solving    cyana    aring    intelligence    afterwards    hierarchical    delivering    atomic    months    biophysical    enabled    scientist    solution    achievement    spectroscopy    reveal    proteins    2d    discovery    candidate    machine    conformational    nmr    overhauser    constitutes    structures    fellow    2010    drug    multiple    divided    summing    living    physiological    protein    dl    unprecedented    science    magnetic    exact    creates    first    derive    explore    freezing    raw    tackled    reduce    enoes    protocol    model    routine    deep    transforms    nuclear    visual    resolution    possibility    structure    revolutionized    cells    outstanding    calculating    algorithm    enhancements    laboratory    techniques    accuracy    artificial    nearly    3d    populated    dynamics    avenues    optimization    emerged    resonance    computer    parts    structural    learning    opportunity    biology    automatically    distance    host    formulate    extracts   

Project "DeepNOE" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-03-01   to  2022-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 191˙149.00

Map

 Project objective

Nuclear Magnetic Resonance (NMR) spectroscopy is one of the leading techniques for protein structure analysis. In contrast to other methods, NMR spectroscopy allows the measurement of the dynamics and structure of a protein under nearly physiological conditions, without the need for crystallization or freezing of a sample. Recent studies on exact Nuclear Overhauser enhancements (eNOEs), carried out in the laboratory of the host professor, have enabled distance measurements in proteins by NMR with accuracy of 0.1 Å. This allows to determine structures in solution and in living cells with unprecedented resolution.

This biophysical achievement creates an outstanding opportunity for a computer scientist (the fellow candidate) to develop the first-of-its-kind model/algorithm that automatically transforms raw NMR measurements into high-resolution protein structures that reveal multiple simultaneously populated conformational states in atomic detail. This problem will be tackled with the use of deep learning (DL), a novel field in machine learning that has emerged after 2010 and has revolutionized data science and artificial intelligence.

The project is divided into 3 parts. First, it is planned to investigate recent advances in DL to derive a model that extracts visual information from 2D and 3D NMR spectra. Afterwards, the proposed model will be integrated into CYANA to formulate a hierarchical DL/optimization routine, which automates all steps of protein structure solving. Finally, it is planned to explore the possibility of calculating protein structures directly from NOESY spectra, which constitutes a new protocol for protein structure solving by NMR spectroscopy.

Summing up, the proposed DL approach has the potential to reduce the time required to solve proteins with NMR from months/years to days, while delivering very high resolution, multi-state structures. We expect this project to open new avenues in structural biology and drug discovery.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEEPNOE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEEPNOE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EGeoCC (2019)

Ethnic geography and civil conflict

Read More  

MS (2020)

Unravelling the molecular and cellular mechanism of metastasis

Read More  

GHSO (2019)

Generation of human steroid-producing organoids: a new approach to treat adrenal insufficiency

Read More