PARAMTIGHT

Parameterized complexity and the search for tight complexity results

 Coordinatore MAGYAR TUDOMANYOS AKADEMIA SZAMITASTECHNIKAI ES AUTOMATIZALASI KUTATO INTEZET 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Hungary [HU]
 Totale costo 1˙150˙000 €
 EC contributo 1˙150˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2011-StG_20101014
 Funding Scheme ERC-SG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-01-01   -   2016-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    MAGYAR TUDOMANYOS AKADEMIA SZAMITASTECHNIKAI ES AUTOMATIZALASI KUTATO INTEZET

 Organization address address: Kende utca 13-17
city: BUDAPEST
postcode: 1111

contact info
Titolo: Dr.
Nome: Andras
Cognome: Benczur
Email: send email
Telefono: +36 1 279 6172
Fax: +36 1 209 5269

HU (BUDAPEST) hostInstitution 1˙150˙000.00
2    MAGYAR TUDOMANYOS AKADEMIA SZAMITASTECHNIKAI ES AUTOMATIZALASI KUTATO INTEZET

 Organization address address: Kende utca 13-17
city: BUDAPEST
postcode: 1111

contact info
Titolo: Dr.
Nome: Dániel
Cognome: Marx
Email: send email
Telefono: 3612796172
Fax: 3612095269

HU (BUDAPEST) hostInstitution 1˙150˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

time    optimality    algorithms    tight    dimensions    is    input    of    techniques    we    parameterized    algorithmic    prove    exploration    theory    complexity    running    size    done   

 Obiettivo del progetto (Objective)

'The joint goal of theoretical research in algorithms and computational complexity is to discover all the relevant algorithmic techniques in a problem domain and prove the optimality of these techniques. We propose that the search for such tight results should be done by a combined exploration of the dimensions running time, quality of solution, and generality. Furthermore, the theory of parameterized complexity provides a framework for this exploration.

Parameterized complexity is a theory whose goal is to produce efficient algorithms for hard combinatorial problems using a multi-dimensional analysis of the running time. Instead of expressing the running time as a function of the input size only (as it is done in classical complexity theory), parameterized complexity tries to find algorithms whose running time is polynomial in the input size, but exponential in one or more well-defined parameters of the input instance.

The first objective of the project is to go beyond the state of the art in the complexity and algorithmic aspects of parameterized complexity in order to turn it into a theory producing tight optimality results. With such theory at hand, we can start the exploration of other dimensions and obtain tight optimality results in a larger context. Our is goal is being able to prove in a wide range of settings that we understand all the algorithmic ideas and their optimality.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

FUTURE T3SS (2013)

Bacterial effector secretion: Function and Architecture of the Type 3 Secretion System

Read More  

COMPLEXLIGHT (2008)

Light and complexity

Read More  

MAGNETIC BEAMS (2012)

Magnetically manipulated molecular beams; a novel ultra-sensitive approach for studying the structure and dynamics of water surfaces

Read More