DESSARITH

Dessins and Arithmetic

 Coordinatore THE UNIVERSITY OF WARWICK 

 Organization address address: Kirby Corner Road - University House -
city: COVENTRY
postcode: CV4 8UW

contact info
Titolo: Dr.
Nome: Peter
Cognome: Hedges
Email: send email
Telefono: +44 2476523859
Fax: +44 2476524991

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 209˙033 €
 EC contributo 209˙033 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-01   -   2014-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF WARWICK

 Organization address address: Kirby Corner Road - University House -
city: COVENTRY
postcode: CV4 8UW

contact info
Titolo: Dr.
Nome: Peter
Cognome: Hedges
Email: send email
Telefono: +44 2476523859
Fax: +44 2476524991

UK (COVENTRY) coordinator 209˙033.40

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

translation    fermat    problem    curves    diophantine    dessins    generalized    equation   

 Obiettivo del progetto (Objective)

'A dessin d’enfant is a type of graph drawing used to study algebraic groups and to provide combinatorial invariants for the action of the absolute Galois group. This project aims to develop new algorithms for computing dessins d’enfants and use these and other methods to attack Diophantine equations. In particular, we are interested in the Generalized Fermat Equation, which has been described by Darmon as the 'new holy grail of number theory' in the sense that it replaces Fermat's Last Theorem as the major unsolved Diophantine problem. Our aim is to provide a practical method of translating any specific case of the generalized Fermat equation to a problem of determining rational points on curves. The field of curves is a rich one with many eminent practitioners and this translation is the surest way to provide progress for the generalized Fermat equation. The tool for this translation will be our dessins computed by our new algorithm.'

Altri progetti dello stesso programma (FP7-PEOPLE)

BISICLO (2012)

"BIogeochemical cycles, Sea Ice and CLimate in the Polar Oceans"

Read More  

MTLE-HS (2010)

Genomic sequence variants that correlate with gene expression and different epigenetic patterns modify risk for mTLE+HS

Read More  

COMRISK (0)

Community level ecological risk assessments of pesticides: determining the optimal species level precision

Read More