STOCHPLAST

Stochastic and statistical properties of dislocation plasticity

 Coordinatore EOTVOS LORAND TUDOMANYEGYETEM 

 Organization address address: EGYETEM TER 1-3
city: BUDAPEST
postcode: 1053

contact info
Titolo: Prof.
Nome: István
Cognome: Groma
Email: send email
Telefono: +36 1 3722802
Fax: +36 1 3722811

 Nazionalità Coordinatore Hungary [HU]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2012
 Periodo (anno-mese-giorno) 2012-09-01   -   2016-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    EOTVOS LORAND TUDOMANYEGYETEM

 Organization address address: EGYETEM TER 1-3
city: BUDAPEST
postcode: 1053

contact info
Titolo: Prof.
Nome: István
Cognome: Groma
Email: send email
Telefono: +36 1 3722802
Fax: +36 1 3722811

HU (BUDAPEST) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

scientific    strain    dynamics    micron    plastic    plasticity    collective    dominant    phenomena    stochastic    dislocation    technological    creep   

 Obiettivo del progetto (Objective)

'The dominant mechanism for producing large irreversible (plastic) strain in atomic crystals is the motion of interacting dislocations, that are line defects in the crystalline lattice. Their collective dynamics plays a dominant role in plastic yield, strain bursts, micron-scale size effects and creep deformation at high temperatures. The project is motivated by the apparent technological need for developing a profound physically-based understanding of these phenomena. We will apply state-of-the-art experiments and well-established dislocation simulations to (i) investigate the stochastic properties of micron-scale plasticity and dislocation avalanches, (ii) explore the nature of the plastic flow transition, (iii) to develop a continuum plasticity model that accounts for boundaries and fluctuations and (iv) to investigate high temperature creep properties of 2D dusty plasma. By applying elements of non-equilibrium statistical mechanics we will develop higher scale models of these dislocation mediated phenomena. Completion of the project is expected not only to lead to top-level scientific results on the stochastic properties of collective dislocation dynamics but also to provide tools being promising candidates for further technological applications.

The EU contribution will help the applicant to establish himself as an individual researcher after his mobility period and contribute significantly to the scientific success of his research career. By improving the chances of his permanent integration, the grant would help to transfer the knowledge he acquired abroad to the host country, and enable him to maintain his scientific international co-operations. The funding will, therefore, contribute for the European Union to maintain a leading role in the field of plasticity and materials science in general.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SNAL (2014)

Smart Nano-objects for Alteration of Lipid-bilayers

Read More  

BREATH (2008)

Characterization of biomarkers in breath of lung and breast cancer patients

Read More  

SMALL_MAM_RECOL (2014)

Post-glacial recolonisation and Holocene anthropization impact on populations of shrews and hedgehogs from Western Europe inferred from zooarchaeology, historical biogeography and ecological modeling

Read More