PHOTOMETA

Photonic Metamaterials: From Basic Research to Applications

 Coordinatore FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Greece [EL]
 Totale costo 2˙100˙000 €
 EC contributo 2˙100˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2012-ADG_20120216
 Funding Scheme ERC-AG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS

 Organization address address: N PLASTIRA STR 100
city: HERAKLION
postcode: 70013

contact info
Titolo: Mrs.
Nome: Zinovia
Cognome: Papatheodorou
Email: send email
Telefono: +30 2810 391522
Fax: +30 2810 391555

EL (HERAKLION) hostInstitution 2˙100˙000.00
2    FOUNDATION FOR RESEARCH AND TECHNOLOGY HELLAS

 Organization address address: N PLASTIRA STR 100
city: HERAKLION
postcode: 70013

contact info
Titolo: Prof.
Nome: Costas
Cognome: Soukoulis
Email: send email
Telefono: +30 2810 391380
Fax: +30 2810 391569

EL (HERAKLION) hostInstitution 2˙100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sps    pcs    em    obstacles    plasmonics    materials    nims    functional    mms    realization    graphene    omms    optical    artificial   

 Obiettivo del progetto (Objective)

'Novel artificial materials (photonic crystals (PCs), negative index materials (NIMs), and plasmonics) enable the realization of innovative EM properties unattainable in naturally existing materials. These materials, called metamaterials (MMs), have been in the foreground of scientific interest in the last ten years. However, many serious obstacles must be overcome before the impressive possibilities of MMs, especially in the optical regime, become real applications. The present project combines NIMs, PCs, and aspects of plasmonics in a unified way in order to promote the development of functional MMs, and mainly functional optical MMs (OMMs). It identifies the main obstacles, proposes specific approaches to deal with them, and intends to study unexplored capabilities of OMMs. The project objectives are: (a) Design and realization of 3d OMMs, and achieve new metasurface designs applying Babinet’s principle. (b) Understanding and reducing the losses in OMM by incorporating gain and EM induced transparency (EIT). (c) Achieving highly efficient PC nanolasers and surface plasmons (SPs) lasers. (d) Use chiral MMs and SPs to reduce and manipulate Casimir forces, and (e) Using MMs, combined with nonlinear materials, for THz generation, and tunable response.(f)Calculate electron- phonon scattering and edge collisions in graphene and in graphene-based molecules. The unifying link in all these objectives is the endowment of photons with novel properties through imaginative use of EM-field / artificial-matter interactions. Some of these objectives seem almost certainly realizable; others are more risky but with higher reward if accomplished; some are directed towards new specific applications, while others explore new physical reality. The accomplishment of those objectives requires novel ideas, advanced computational techniques, nanofabrication approaches, and testing. The broad expertise of the PI and his team, and their pioneering contributions to NIMs, PCs, and plasmonics qualifies them for facing the challenges and ensuring the maximum possible success of the project.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

MUMI (2012)

Multimodal Molecular Imaging

Read More  

BEEHIVE (2014)

Bridging the Evolution and Epidemiology of HIV in Europe

Read More  

VARB (2009)

Variability and Robustness in Bio-molecular systems

Read More