IMPSCORE

Introducing stacking and halogen bonding effects into ligand-target interaction energy calculations

 Coordinatore STICHTING VU-VUMC 

 Organization address address: DE BOELELAAN 1105
city: AMSTERDAM
postcode: 1081 HV

contact info
Titolo: Dr.
Nome: Yvonne
Cognome: Kops
Email: send email
Telefono: +31 205987500
Fax: +31 206462457

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 183˙469 €
 EC contributo 183˙469 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-05-15   -   2015-11-14

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    STICHTING VU-VUMC

 Organization address address: DE BOELELAAN 1105
city: AMSTERDAM
postcode: 1081 HV

contact info
Titolo: Dr.
Nome: Yvonne
Cognome: Kops
Email: send email
Telefono: +31 205987500
Fax: +31 206462457

NL (AMSTERDAM) coordinator 183˙469.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

scoring    sf    enthalpic    fragment    mechanical    universe    experimental    ligand    size    data    binding    delta    introducing    calculations    screening    chosen    interactions    autodock    special    pi    docking    function    functions   

 Obiettivo del progetto (Objective)

'The subject of the present proposal is computational chemistry with specific aim to incorporate certain interactions into docking calculations. The docking technique helps the design and synthesis of efficient pharmaceuticals that act via ligand–receptor interactions. In the frame of the project, new scoring function (SF) term(s) will be introduced for selected interactions (π – π stacking and halogen bonds) using experimental enthalpic data and combined quantum-mechanical/molecular-mechanical calculations. Scoring functions play a central role in the quality and the speed of docking calculation In popular scoring functions (e.g. in the Autodock) enthalpic (ΔH) and entropic terms can be distinguished and the sum of these terms are correlated to experimental binding free energy (ΔG) values. Previous SF developments are principally based on this correlation, however, isothermal titration calorimetric (ITC) measurements afford the possibility of developing separately the two principal components. Introducing new terms for the description of the chosen special interactions, enthalpic part of the chosen SF (from the Autodock or Autodock-Vina program) will be improved with the help of fragment based ligand set augmented with experimental ΔH data. In addition to introducing new SF terms, the application of fragment based test library in SF development is also an important novelty. It has several advantages as, for instance, screening with a fragment trained SF function on the fragment universe one can capture a more diverse hit space than with the usual high throughput screening on the chemical universe. Furthermore, in case of a fragment-size ligand the investigated special interactions can be more obviously separated from other effects in the binding analysis. Finally, larger QM environment can be taken into account for a fragment-size ligand than for peptide substrates providing more accurate theoretical results.'

Altri progetti dello stesso programma (FP7-PEOPLE)

GLIO_IL-23 (2011)

EFFECT OF IL-23 ON IMMUNE CELL INFILTRATION AND TUMOR GROWTH IN A GLIOMA MODEL

Read More  

PHAGE MAS SSNMR (2008)

Structural characterization of filamentous bacteriophage viruses by magic-angle spinning solid-state NMR spectroscopy

Read More  

MTB VARIATION (2011)

High throughput sequencing to reveal the causes and consequences of Mycobacterium tuberculosis genomic variation

Read More