SBL

Study of high frequency vibration induced steady wetting and of high frequency vibration induced nanoparticle assembly for molecular electronics

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 823 2958

 Nazionalità Coordinatore Israel [IL]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-11-01   -   2017-10-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 823 2958

IL (HAIFA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

structures    particle    flow    physics    submicron    nano    signals    natural    pi    particles    suspensions    micrometre    electronic    translating    saw    micron    nanometre    patterns    resolutions   

 Obiettivo del progetto (Objective)

'One of the main goals of scientific research nowadays is to develop methods to prompt and control natural processes at nanometre and micrometre resolutions for advancing technological capabilities at such length resolutions. Many corresponding examples exist, from which we bring the field of molecular electronics; although advanced remarkably in recent years, this field lacks cheap and efficient integration methods for fabricating nano- and micro-scale complex and inter- and intra-connected artificial structures made of large quantities of electronic building-blocks such as gold nano-particles, carbon nano-tubes, polymeric semiconductor wires, and other molecules of electronic viability 2-5. The PI is proposing to study the physics associated with translating complex electronic signals, comprising MHz to GHz frequencies, to uniquely determined micron and submicron non linear flow patterns, capable of integrating particulate suspensions into structures at related resolutions; flow is invoked through the intermediate step of translating electronic signals to packets of Rayleigh surface acoustic waves (SAWs) atop a piezoelectric SAW device in contact with particle suspensions that undergoes attachment/detachment processes according with the spatial strength and directionality of the flow and attraction/repulsion DLVO forces between the particles themselves. The PI will, foremost, elucidate the physics of SAW induced complex micron and submicron stable and unstable stagnant flow patterns in microchannels, and will further study stability of multiple particle suspensions, crumbed into patterns by flow, using principles of colloid science and the physics of particle interactions. This proposed study thus suggests a new approach for managing and controlling natural processes in nanometre and micrometre resolutions.'

Altri progetti dello stesso programma (FP7-PEOPLE)

SMART-E (2013)

Sustainable Manufacturing through Advanced Robotics Training in Europe

Read More  

VISCUESACQWO (2014)

The role of visual cues in speech segmentation and the acquisition of word order: a study of monolingual and bilingual adults and infants

Read More  

MICROPUFA (2012)

Developing a versatile and efficient microbial PUFA producer

Read More