NEMS INERTIAL IMAGE

Inertial Imaging with Nanoelectromechanical Systems

 Coordinatore Bilkent Üniversitesi 

 Organization address address: ESKISEHIR YOLU 8 KM
city: ANKARA
postcode: TR-06800

contact info
Titolo: Prof.
Nome: Adnan
Cognome: Akay
Email: send email
Telefono: 903123000000
Fax: +90312266 4126

 Nazionalità Coordinatore Turkey [TR]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-03-01   -   2018-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Nome Ente NON disponibile

 Organization address address: ESKISEHIR YOLU 8 KM
city: ANKARA
postcode: TR-06800

contact info
Titolo: Prof.
Nome: Adnan
Cognome: Akay
Email: send email
Telefono: 903123000000
Fax: +90312266 4126

TR (ANKARA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

molecule    skewness    mass    measured    demonstrations    variance    sensing    position    nems    perform    molecules    obtain    density   

 Obiettivo del progetto (Objective)

'Nano-electromechanical Systems (NEMS) are extremely sensitive detectors of physical parameters. In recent years, the applications of NEMS in mass sensing have gained importance through demonstrations of mass sensitivities at the atomic level and mass measurements of single protein molecules. These demonstrations show that is possible to perform biochemical analysis through NEMS mass measurements (NEMS Mass Spectrometry) especially for physiologically important large molecules and biostructures. The NEMS literature so far has always treated these large molecules as point-particles; however considering the miniaturization trend of NEMS and the significant size of targeted large molecules, this assumption is getting less applicable for experiments. In this project, we demonstrate how we can theoretically and experimentally measure the total mass of an arbitrary mass distribution on NEMS through simultaneous measurements of multiple modes. Furthermore we show that this method can be used to obtain important spatial information about the measured molecule, such as its average position, the variance of its density distribution, the skewness of the molecule etc. This extra characterization modality expands the capabilities of NEMS devices: one can obtain, for instance, the effective density of the sample being measured by combining mass and extent (variance) information. With the proposed technique it is possible to obtain an approximate image of an adsorbed molecule by reconstructing the density profile using the measured moments of the distribution. In the project, multimodal NEMS devices will be fabricated, electronic and vacuum systems to perform the measurements will be constructed and up to the third moment (mass, position, variance and skewness) of different analytes (nanoparticles and biomolecules) will be obtained. The project will be the first step for the development of a novel, powerful NEMS sensing tool and facilitate the integration process of the researcher.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EOSDNSM (2013)

Equation of state dependence of neutron star mergers

Read More  

DEVCOM (2013)

European Initial Training Network on Developmental and Computational Biology

Read More  

INTEGRREGULFESPLAST (2011)

Regulation of iron-sulfur (Fe-S) cluster assembly in plastids and coordination with plant physiology

Read More