MULTISPLASH

Multi-focal scanning plasmonic nanoscope for super resolution imaging of living cells

 Coordinatore TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 823 2958

 Nazionalità Coordinatore Israel [IL]
 Totale costo 184˙558 €
 EC contributo 184˙558 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2013-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2014
 Periodo (anno-mese-giorno) 2014-05-01   -   2016-04-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY

 Organization address address: TECHNION CITY - SENATE BUILDING
city: HAIFA
postcode: 32000

contact info
Titolo: Mr.
Nome: Mark
Cognome: Davison
Email: send email
Telefono: +972 4 829 3097
Fax: +972 4 823 2958

IL (HAIFA) coordinator 184˙558.80

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

wavelength    imaging    limit    scheme    network    vivo    losses    microscopy    parallel    consists    plasmons    multiple    light    wavelengths    plasmonic    resolution    nm    points    ultra    raster    foci    scanning    signals    slm    image    prototype    size    surface   

 Obiettivo del progetto (Objective)

'This project aims to design the first ever prototype of a plasmonic microscope for in vivo bio imaging. The principle behind the prototype consists in deep sub-wavelength focusing and raster scanning of multiple points to achieve imaging. On the one hand, using surface plasmons excitation for microscopy instead of light offers the advantage of ultra short plasmonic wavelengths (down to 100 nm) for visible light frequencies, enabling a plasmonic diffraction limit of 50 nm which sets the resolution of the microscopy. On the other hand, in this ultra short wavelength regime surface plasmons suffer losses, limiting the propagation length of plasmon waves. Losses limit the image size (field of view) to no more than 10 by 10 resolution points, a size which is completely insufficient for biological samples. The main scientific challenge of this proposal is to surpass the plasmonic losses which constitute a limitation for microscopy and most plasmonic applications. While previous attempts were based on reducing the losses (succeeded up by a factor of two), we propose a scheme that is not sensitive to these losses. The scheme consists in a 'network' of periodic plasmonic repeaters that regenerate the lossy signals, similarly to the standard method used for distributing cellular phones and TV/radio signals over long distances. In particular, we will use a Spatial Light Modulator (SLM) to create and scan multiple plasmonic foci in parallel. The image is acquired via raster scanning of all the plasmonic foci in parallel, yielding an image size limited only by the extension of the network, namely the number of pixels in the SLM. Moreover, this scheme also reduces the scanning time by up to two orders of magnitudes, making it suitable for in-vivo measurements.

In conclusion, we propose a technological advancement for microscopy based on a novel scheme that can harvest the short plasmonic wavelengths for microscopy without compromising any other relevant parameters.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ELCAT (2008)

Surface Electrochemical Reactivity in Electrocatalysis: A combined Theoretical and Experimental Approach

Read More  

FRICON (2014)

Marie Curie cofunding of the FRICON mobility programme in the Research Council of Norway scheme for independent basic research projects

Read More  

NEPHROTOOLS (2011)

The potential of human kidney stem/progenitor cells for use in drug discovery and regenerative therapy programmes

Read More