SYBHES

Systems Biology of the Heterobasidion-Spruce Interaction: Application of Metabolomics and Genomics to Understanding Host Resistance

 Coordinatore THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN 

 Organization address address: KING'S COLLEGE REGENT WALK
city: ABERDEEN
postcode: AB24 3FX

contact info
Titolo: Dr.
Nome: Stephen
Cognome: Woodward
Email: send email
Telefono: -273849
Fax: -274911

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 169˙957 €
 EC contributo 169˙957 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2007-2-1-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2008
 Periodo (anno-mese-giorno) 2008-04-23   -   2010-04-22

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE UNIVERSITY COURT OF THE UNIVERSITY OF ABERDEEN

 Organization address address: KING'S COLLEGE REGENT WALK
city: ABERDEEN
postcode: AB24 3FX

contact info
Titolo: Dr.
Nome: Stephen
Cognome: Woodward
Email: send email
Telefono: -273849
Fax: -274911

UK (ABERDEEN) coordinator 0.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

resistant    metabolomics    host    genotypes    gene    annosum    inoculation    clones    wounding    pathogen    sitka    forests    spruce    breeding    picea    tissues    bark    heterobasidion    differing    resistance   

 Obiettivo del progetto (Objective)

'Root and butt rot of conifers caused by Heterobasidion is one of the most important tree diseases in the northern hemisphere. Despite the high impact of Heterobasidion, ability to control the disease in forests with a long history of management is very limited. Traits associated with resistance to pathogen growth appear to be highly heritable, and could be exploited in selection and breeding programmes. However, neither the molecular control nor the biochemical basis for this resistance is known in Picea species. This project will utilise state-of-the art metabolomics and genomics methods to elucidate biochemistry and gene regulation in Sitka spruce (Picea sitchensis) challenged with Heterobasidion annosum, in relation to lesion development and extension growth of the pathogen in bark tissues. Responses of six mature Sitka spruce clones differing in susceptibility/resistance will be assessed after wounding and artificial inoculation with three isolates of H. annosum differing in virulence at 0, 3, 7, 21 and 35 days after treatment. Bark tissues surrounding the wounding and inoculation points will be analyzed for phenolic and terpenoid components using LC-MS-based metabolomic techniques to identify changes in the metabolome of spruce bark and pinpoint key constitutive and induced differences between resistant and susceptible host genotypes. Key genes in metabolic pathways identified as upregulated in metabolomics will be examined in detail using gene expression analyses based on quantitative PCR. This project will increase our knowledge of the physiological processes involved in resistance of spruce to infection by Heterobasidion, enabling accurate and rapid identification of host genotypes showing greater resistance to the pathogen. Such resistant clones will be of very high value in breeding programmes, in forests having high incidence of Heterobasidion and in the extensive afforestations now planned on agricultural land taken out of food production.'

Altri progetti dello stesso programma (FP7-PEOPLE)

XBEBOA (2012)

Extreme ultraviolet and X-ray spectroscopy to understand dynamics beyond the Born Oppenheimer Approximation

Read More  

ODMR-CHEM (2014)

"Optically detected magnetic resonance for ultra-sensitive chemical analysis, imaging and process monitoring"

Read More  

DWBQS (2011)

Dynamics of Weakly Bound Quantum Systems

Read More