AFFINITY

Actuation of Ferromagnetic Fibre Networks to improve Implant Longevity

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 1˙442˙756 €
 EC contributo 1˙442˙756 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2009-StG
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-01-01   -   2015-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Dr.
Nome: Athina
Cognome: Markaki
Email: send email
Telefono: -767596
Fax: -333841

UK (CAMBRIDGE) hostInstitution 1˙442˙756.00
2    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) hostInstitution 1˙442˙756.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

implant    loosening    mechanical    fibre    tissue    therapeutic    beneficial    bone    network    magneto    ferromagnetic    surface    magnetic    insufficiently    porous    fibres    networks    problem   

 Obiettivo del progetto (Objective)

'This proposal is for an exploratory study into a radical new approach to the problem of orthopaedic implant loosening. Such loosening commonly occurs because the joint between the implant and the surrounding bone is insufficiently strong and durable. It is a serious problem both for implants cemented to the bone and for those dependent on bone in-growth into a rough/porous implant surface. In the latter case, the main problem is commonly that bone in-growth is insufficiently rapid or deep for a strong bond to be established. The idea proposed in this work is that the implant should have a highly porous surface layer, made by bonding ferromagnetic fibres together, into which bone tissue growth would occur. During the post-operative period, application of a magnetic field will cause the fibre network to deform elastically, as individual fibres tend to align with the field. This will impose strains on the bone tissue as it grows into the fibre network. Such mechanical deformation is known to be highly beneficial in promoting bone growth, providing the associated strain lies in a certain range (~0.1%). Preliminary work, involving both model development and experimental studies on the effect of magnetic fields on fibre networks, has suggested that beneficial therapeutic effects can be induced using field strengths no greater than those already employed for diagnostic purposes. A comprehensive 5-year, highly inter-disciplinary programme is planned, encompassing processing, network architecture characterisation, magneto-mechanical response investigations, various modelling activities and systematic in vitro experimentation to establish whether magneto-mechanical Actuation of Ferromagnetic Fibre Networks shows promise as a new therapeutic approach to improve implant longevity.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

NIMO (2014)

Neural and Immune Orchestrators of Forebrain Wiring

Read More  

SUREPIRL (2012)

Picosecond Infrared Laser for Scarfree Surgery with Preservation of the Tissue Structure and Recognition of Tissue Type and Boundaries

Read More  

GRAPH GAMES (2011)

Quantitative Graph Games: Theory and Applications

Read More