NANOCAT

Catalysis at the Nanoscale

 Coordinatore STICHTING KATHOLIEKE UNIVERSITEIT 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore Netherlands [NL]
 Totale costo 1˙500˙000 €
 EC contributo 1˙500˙000 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091028
 Funding Scheme ERC-SG
 Anno di inizio 2010
 Periodo (anno-mese-giorno) 2010-09-01   -   2015-08-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    STICHTING KATHOLIEKE UNIVERSITEIT

 Organization address address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ

contact info
Titolo: Dr.
Nome: Johannes Albertus Antonius Wilhemus
Cognome: Elemans
Email: send email
Telefono: +31 24 3653099
Fax: +31 24 3652190

NL (NIJMEGEN) hostInstitution 1˙500˙000.00
2    STICHTING KATHOLIEKE UNIVERSITEIT

 Organization address address: GEERT GROOTEPLEIN NOORD 9
city: NIJMEGEN
postcode: 6525 EZ

contact info
Titolo: Ms.
Nome: Sabine
Cognome: Vernooij
Email: send email
Telefono: +31 24 3652359
Fax: +31 24 3652359

NL (NIJMEGEN) hostInstitution 1˙500˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

chemistry    chemical    surface    reactions    individual    setup    molecules    action    reaction    stm    mechanisms    liquid    catalysts   

 Obiettivo del progetto (Objective)

'Is it possible to really 'see' individual molecules in action as they are involved in a chemical reaction at a surface? And can we, in this way, get a complete understanding of reaction mechanisms, at the resolution of atoms? The importance of studying chemical reactions at surfaces has recently been highlighted by Gerhard Ertl being awarded the Nobel Prize in chemistry in 2007, for elucidating mechanisms of chemical processes on heterogeneous catalysts at the single molecule level with Scanning Tunneling Microscopy (STM). Although ground-breaking, these studies were carried out in ultra-high vacuum, which is, however, an unrealistic condition for conventional chemical or biological reactions which usually occur in a liquid medium. The aim of this ERC proposal is to establish a research area at the interface of chemistry and physics which has so far been nearly completely unexplored: the investigation of chemical reactions at solid-liquid interfaces at the highest detail possible, by visualizing molecules with STM while they are involved in a reaction. By doing so, unique information about reaction mechanisms can be obtained by looking at individual molecules, instead of ensembles where the behaviour of many molecules is averaged. Towards this goal I propose to use a newly developed catalysis-STM setup, which is equipped with a liquid-cell and a bell-jar, and in which the conditions that are commonly applied in chemical laboratory processes (e.g. addition and withdrawal of chemicals, working under different atmospheres) can be closely resembled. In this setup I intend to carry out chemical reactions at a surface and monitor the behaviour of individual adsorbed catalysts, while they are in action. More specifically, it is my aim to investigate in detail the relation between structure and reactivity at the nanoscale'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

POPPHYL (2009)

Population phylogenomics: linking molecular evolution to species biology

Read More  

COLSTRUCTION (2008)

Numerical Design of Self Assembly of Complex Colloidal Structures

Read More  

INTERRUPTB (2013)

"Estimating the effective reproductive rate of M. tuberculosis from changes in molecular clustering rates, to measure the impact of public health interventions on TB transmission"

Read More