COPULCO

Cascaded Optical Pulse Compressor

 Coordinatore Shanghai University 

 Organization address address: Shangda Road 99
city: Shanghai
postcode: 200444

contact info
Titolo: Ms.
Nome: Jun
Cognome: Ge
Email: send email
Telefono: +86 21 66136203
Fax: +86 21 66136203

 Nazionalità Coordinatore China [CN]
 Totale costo 15˙000 €
 EC contributo 15˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IIF
 Funding Scheme MC-IIFR
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-06-01   -   2014-05-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Shanghai University

 Organization address address: Shangda Road 99
city: Shanghai
postcode: 200444

contact info
Titolo: Ms.
Nome: Jun
Cognome: Ge
Email: send email
Telefono: +86 21 66136203
Fax: +86 21 66136203

CN (Shanghai) coordinator 15˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

intense    visible    accessibility    fiber    cascaded    near    cycle    soliton    few    compact    generate    life    real    pulses    laser    time    pump    nonlinear    compression    infrared    simple    femtosecond    ultra   

 Obiettivo del progetto (Objective)

'Ultra-short ultra-intense laser pulses are crucial for exploring state-of-the-art research and applications in new territories of extreme nonlinear optics in physics, chemistry, biology, medicine and for industrial purposes. Most of the research is currently only carried out in specialized laser laboratories and it is a challenge to generate energetic few-cycle pulses (less than 20 fs) through a compact and reliable approach, not just in the infrared, where most pulsed lasers operate, but certainly also in the visible. In this project we focus on improving the accessibility of such short and intense femtosecond pulses in a simple, reliable way and on moving them out of the research lab and into the real-life available setups. The goal is to generate ultra-short visible and near-infrared pulses through cascaded quadratic soliton compression of longer near-infrared pulses from fiber laser amplifiers. The soliton compressor is based on cascaded second-order nonlinear processes and will employ engineered quasi-phase-matching techniques. This will reduce the detrimental pedestal of the compressed pulses, opening up for more sensitive applications such as pump-probe spectroscopy. Temporal few-cycle solitons in visible and near-infrared regions will be demonstrated both in bulk and in waveguide devices. Using this novel and simple generation of ultra-short pulses as pump for THz applications will also be explored for the first time. The motivation of the proposed project is also to make ultra-short pulses available to real-life applications. This is ensured by applying the compression technique on the promising fiber laser technology that provides a compact, efficient, stable and cheap source of laser pulses. The research results will consolidate Europe as a leader in ultra-fast femtosecond processes and at the same time boost the competitiveness of European research because of an increased accessibility of ultra-short pulses.'

Altri progetti dello stesso programma (FP7-PEOPLE)

DECORO (2014)

Developmental Context-Driven Robot Learning

Read More  

MULTI-FUNC-MATERIALS (2009)

"Quest for novel Multi-functional Oxides: Synthesis, bulk properties, and their microscopic origins"

Read More  

VASC-GEN (2013)

Endoglin-Mediated Vascular Regeneration to Promote Heart Repair

Read More