ER AND METABOLISM

Oxidative protein folding and pathogenesis of metabolic disorders

 Coordinatore THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE 

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2015-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF CAMBRIDGE

 Organization address address: The Old Schools, Trinity Lane
city: CAMBRIDGE
postcode: CB2 1TN

contact info
Titolo: Ms.
Nome: Renata
Cognome: Schaeffer
Email: send email
Telefono: +44 1223 333543
Fax: +44 1223 332988

UK (CAMBRIDGE) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

prdx    oxidative    zito    er    disulfide    signaling    bond    cells    responsive    nutrient    ero    folding    protein    et    insulin    al   

 Obiettivo del progetto (Objective)

'Endoplasmic reticulum (ER) oxidation 1 (ERO1) trasfers disulfide bonds to protein disulfide isomerase (PDI) and is essential for oxidative protein folding in simple eukaryotes such as yeast and worms. Higher eucaryotes have alternative pathways for disulfide bond formation (Zito et al., 2010). Recently we have discovered that the ER localized peroxiredoxin 4 (PRDX4) is able to couple use of hydroperoxides for oxidative protein folding, independently of ERO1 (Zito et al., 2010b). Hydrogen peroxide production is coupled both to nutrient assimilation and to insulin signaling whereas disulfide bond formation is limiting to the production of important signaling molecules such as insulin itself (in nutrient and insulin-responsive beta cells) and adipokines (in insulin responsive adipose tissue). The aim of this proposal is to evaluate, in cultured cells and intact mice, the impact of PRDX4 and ERO1 activity on the biosynthesis and the functional state of insulin and adypokines and consequently on intermediary metabolism. Recent evidence indicates that disulfide bond formation can be manipulated with chemical probes (Blais et al., 2010). Therefore the proposed study may bring to light novel targets for pharmacological intervention in diabetes and insulin resistance states.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ICEVOLUME (2013)

Ice volume changes of Icelandic ice caps in the last 75 years – a view from the air

Read More  

MODEL_PREDICTABILITY (2011)

Volatility Forecasting Evaluation Framework

Read More  

DARK-GRB-SN (2009)

Optical Studies of Type Ia and Type Ic Supenovae

Read More