ICFLOAT

Coupled fluid-solid numerical modelling for deep-water and far-offshore floating wind turbines using an adaptive finite element method

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 20 7594 8773
Fax: +44 20 7594 8609

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 199˙549 €
 EC contributo 199˙549 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-10-01   -   2013-09-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Mr.
Nome: Shaun
Cognome: Power
Email: send email
Telefono: +44 20 7594 8773
Fax: +44 20 7594 8609

UK (LONDON) coordinator 199˙549.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

impact    minimise    moorings    fluids    ocean    deep    farms    wave    coupled    turbine    effect    gap    solids    floating    wind    waters    seabed    platforms    source    energy    fixed    numerical    turbines    computational    offshore    advantages    hull    fill    tool    placing   

 Obiettivo del progetto (Objective)

'The proposed research aims to numerically simulate the impact of far-offshore wind turbines placed in deep waters. Importantly, such turbines offer several advantages over existing wind farms, for example stronger and steadier winds, and reduced visual and noise impact. Therefore, placing wind turbines far offshore will be essential for increasing the share of renewable energy production in the next decade.

In current offshore wind farms, the platforms are typically fixed to the seabed and as a result, cost becomes prohibitive in waters deeper than 50 metres. This limitation is a bottleneck for the further exploitation of wind energy in Europe. Far offshore, floating designs minimise the lateral wave loads acting on the turbine and are cheaper than fixed platforms reaching the same depth. In the present study, the hull of the wind turbine consists of a floating steel cylinder attached to the seabed through moorings, while the turbine is modelled as an actuator disc. Numerical tools capable of calculating the complete response of a floating wind turbine with fully coupled hull, moorings and wind turbine are currently at an early stage of development. An efficient strategy to minimise the computational cost is also lacking. To fill this knowledge gap, cutting-edge ocean/fluids and solids computational methods will be employed. Key components are: (a) a numerical wave deep basin that uses unstructured meshing, coupled to (b) a discrete element method for the dynamics of solids with (c) finite element modelling of stresses and (d) mesh adaptivity.

The overall deliverable is an open-source code to model the two-way coupling between fluids and floating solids. The proposed tool will be capable of: (1) determining the limits of stability and resistance of the floating system to different weather conditions, (2) assessing the effect of deep-ocean currents on the hull and moorings, (3) estimating the effect of the turbine movement on the power extracted.'

Introduzione (Teaser)

Placing wind turbines far offshore has several advantages over existing wind farms yet design and implementation is complicated. An open-source modelling tool developed with EU support should fill the knowledge gap.

Altri progetti dello stesso programma (FP7-PEOPLE)

TOPDS (2009)

Topological dynamics and chaos on compact metric spaces

Read More  

NANODYGP (2010)

Nanoscale Operation and Dynamics of small GTPases - Identification of novel Isoform specifying Determinants

Read More  

OAEX (2009)

Ocean Acoustic Exploration

Read More