Opendata, web and dolomites

GENEVABREED TERMINATED

Cloning and functional characterization of a complex resistance locus from ‘Geneva’ to breed apple cultivars with durable scab resistance

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "GENEVABREED" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE EDMUND MACH 

Organization address
address: VIA EDMONDO MACH 1
city: SAN MICHELE ALL'ADIGE
postcode: 38010
website: http://cri.fmach.eu; www.fmach.eu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 238˙354 €
 EC max contribution 238˙354 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2016
 Duration (year-month-day) from 2016-11-01   to  2019-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE EDMUND MACH IT (SAN MICHELE ALL'ADIGE) coordinator 238˙354.00

Map

 Project objective

Apple scab caused by Venturia inaequalis is the major constraint to apple production worldwide, causing severe economic losses. As current commercial cultivars are highly susceptible to scab, introduction of new scab-resistant cultivars will reduce the intensive use of pesticides now required to control this disease. Although the ‘Geneva’ apple is an important source of resistance for breeding, its complex scab resistance has not been properly characterized. In preliminary studies, we mapped to chromosome 4 of ‘Geneva’ a 5 cM region containing three genes conferring both dominant and recessive scab resistance, which corresponds to a 2 Mbp region containing nine candidate NBS-LRR resistance genes on the physical map of ‘Golden Delicious’ (GD). This provided the first evidence of recessive genetic control of apple scab resistance. In this project proposal, we will further characterize this complex locus, employing next generation sequencing, together with bioinformatics and functional analysis of disease candidate resistance genes (CRGs): (1) we will sequence the resistance locus in ‘Geneva’ and identify CRGs that are polymorphic (presence/absence, or sequence polymorphism) between the resistant ‘Geneva’ and the susceptible GD; (2) we will clone each CRG with its native promoter, terminator and introns; and (3) transform susceptible lines with the individual CRGs to evaluate their effect on the level of disease resistance and its race-specific spectrum. This will not only build a better understanding of the genetic basis of apple scab resistance and the gene-for-gene relationships between the pathogen and the host, but it will enable the development of molecular markers for breeding new ‘sprayfree’ cultivars with durable scab resistance.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GENEVABREED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GENEVABREED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

RegARcis (2020)

Role of the SWI/SNF complex in the Androgen Receptor cistrome regulation

Read More