Opendata, web and dolomites

GENMETASTEM SIGNED

GENOMIC AND METABOLIC REGULATION OF METASTATIC CANCER STEM CELLS

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GENMETASTEM project word cloud

Explore the words cloud of the GENMETASTEM project. It provides you a very rough idea of what is the project "GENMETASTEM" about.

invasion    animal    regulates    mat    contractility    cellular    lab    prognostic    nevertheless    metabolic    triggered    link    mediated    rho    regulate    distant    metabolism    epithelial    organs    host    emt    metastasis    signalling    causes    carcinoma    migration    correlates    transition    metastasize    self    traits    functionally    cancer    cytoskeletal    mode    regulated    cscs    interestingly    renew    breast    acquire    successfully    cell    deaths    stem    rock    data    maintained    models    contractile    initiation    tumour    genes    linked    acquisition    spread    understand    preliminary    cells    suggesting    differentiate    actomyosin    combines    drug    melanoma    shows    renewal    interdisciplinary    closely    unravelling    glutamine    hypothesize    metastatic    resistance    relapse    unexplored    imaging    biology    clues    therapies    techniques    stemness    participate    vivo    biochemistry    regulating    cues    ultimate    movement    types    amoeboid    elongated    markers    mesenchymal    molecular    regulation   

Project "GENMETASTEM" data sheet

The following table provides information about the project.

Coordinator
KING'S COLLEGE LONDON 

Organization address
address: STRAND
city: LONDON
postcode: WC2R 2LS
website: www.kcl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.kcl.ac.uk
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

The major causes of cancer deaths are relapse and resistance to current therapies associated with the presence of cancer stem cells (CSCs) and metastatic growth in distant organs. CSCs have the ability to self-renew and differentiate in non-CSCs. In breast cancer, acquisition of stemness properties has been closely related to epithelial-mesenchymal transition (EMT), a key process in cancer invasion and metastasis triggered via Rho-ROCK mediated actomyosin contractility. Interestingly, in melanoma, transition from elongated-mesenchymal to amoeboid mode of movement (MAT) driven by Rho-ROCK signalling has been associated with increased stemness. Furthermore, preliminary data from host lab shows that actomyosin cytoskeletal regulates glutamine metabolism in both melanoma and breast cancer cells. Metabolic cues participate in stem cell self-renewal regulation, suggesting that, in very contractile cells, the regulation of EMT, metastatic spread and tumour initiation might be functionally linked to stemness via metabolic clues. Nevertheless, how very contractile cells regulate genes involved in all these processes remains unexplored. As increasing contractility via EMT in carcinoma cells or via MAT in melanoma cells correlates with increasing stemness, we hypothesize a molecular link between the pathways regulating both migration and stemness abilities, which will be maintained across tumour types (from carcinoma to melanoma). The main goal of this proposal is to understand how tumour cells can acquire stem cell traits to successfully metastasize and how this can be regulated by the actomyosin cytoskeletal by using an interdisciplinary approach that combines state-of-the-art techniques in molecular and cellular biology, biochemistry, in vivo imaging and animal models. This will allow to identify key important genes regulating both stemness traits and metastatic spread with the ultimate goal of unravelling novel drug targets and prognostic markers of distant relapse.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GENMETASTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GENMETASTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

ROMANCE (2020)

StRategies fOr iMproving Agronomic practices based oN miCrobiomEs.

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More