Opendata, web and dolomites

Cyanolichens SIGNED

Genetic diversity of cyanobacterial symbionts of lichens and of free-living populations of Nostoc in biological soil crust communities of threatened alvar grasslands

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Cyanolichens" data sheet

The following table provides information about the project.

Coordinator
HELSINGIN YLIOPISTO 

Organization address
address: FABIANINKATU 33
city: HELSINGIN YLIOPISTO
postcode: 00014
website: www.helsinki.fi

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 191˙325 €
 EC max contribution 191˙325 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme /MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-06-15   to  2017-06-14

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HELSINGIN YLIOPISTO FI (HELSINGIN YLIOPISTO) coordinator 191˙325.00

Mappa

 Project objective

Contemporary nature conservation policy in Europe has identified the protection of alvars and other semi-natural grasslands to be important for halting biodiversity loss. Loss of biodiversity implies not only species and communities but also loss of genetic diversity. To design effective conservation strategies for threatened biodiversity, the basic biology of the target organisms needs to be understood. Lichens are symbiotic entities consisting of at least two components, a fungus (mycobiont) and algae and/or cyanobacteria (photobionts), living in intimate symbiotic association. The genetic diversity of cyanobacteria will be studied in cyanobacterial lichens (cyanolichens) and in free-living cyanobacteria that form biological soil crusts (BSC) in North European alvars. The main DNA markers used will be tRNALeu (UAA) intron and 16S sequences for cyanobacteria and ITS sequences for lichen mycobionts. Cyanobiont specificity of lichen mycobionts and possible overlap in the cyanobiont spectra of different lichens will be determined. Also free-living Nostoc genotypes from the same habitats will be screened in order to establish their potential role in the symbiont pool. The diversity of lichen cyanobionts and free-living cyanobacteria in alvars, restored alvars and alvar-like substitution habitats will be compared to determine the effects of disturbance history on genotype diversity patterns. This study targets the very poorly known relationships between lichen-symbiotic cyanobacteria and their free-living relatives and will be the first of its kind in any grassland environment. The results will significantly improve our understanding of lichen biology and community ecology, and especially of the role of symbiont specificity in generating and maintaining lichen diversity. The results will have wide practical application in the design of conservation measures to protect the highly specialized BSC communities of the remaining semi-natural grassland in North Europe.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CYANOLICHENS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CYANOLICHENS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MATHCOV (2018)

Maternal temperature history controls progeny vigour

Read More  

Selfish discourse (2018)

Underspecification in spoken and written discourse: interpretation, compensation and cognitive implications

Read More  

FunSilting (2018)

Functorial techniques in silting theory

Read More