Opendata, web and dolomites

FraxiFam

Reconstructing gene family evolution in the ash genus (Fraxinus

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FraxiFam" data sheet

The following table provides information about the project.

Coordinator
QUEEN MARY UNIVERSITY OF LONDON 

Organization address
address: 327 MILE END ROAD
city: LONDON
postcode: E1 4NS
website: http://www.qmul.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.ashgenome.org
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2017-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    QUEEN MARY UNIVERSITY OF LONDON UK (LONDON) coordinator 195˙454.00

Map

 Project objective

Comparisons among whole genome sequences allow us to survey differences in gene content among organisms, and hypothesise patterns of gene gain and loss through evolution. Rates of gene flux appear to be surprisingly high, and many genes are unexpectedly unique to species (“orphan” genes). In plants, increasing evidence suggests that genome evolution has been shaped by multiple rounds of whole genome duplication (WGD) after which many duplicated genes are lost, but some duplicates are retained and diverge. The extent to which novel genes arise due to WGD, tandem duplications, horizontal gene transfers, or de novo, remains an open question, especially in plants where WGD seems to be such a pervasive feature of evolution. Our knowledge is hampered by the fact that until now we have been limited to comparisons of whole genome sequences in plants that are highly diverged from one another. This means that the early consequences of gene duplication, and the early divergence of duplicated genes, have not been studied on a genomic scale. This project will use a new dataset, generated by the host lab, containing the whole genome sequence of every species within a plant genus (the genus Fraxinus – ash trees). As well as having inferred WGDs in its ancestry, this genus contains species that have undergone recent WGD. We propose to conduct a comprehensive analysis of gene and gene family evolution in this genus, compiling a major public database of Fraxinus gene families (FraxiFam). Using this data we will conduct the first genome-wide and genus-wide study of gene content evolution, allowing us to study the early stages of gene sequence and gene content divergence. We will test hypotheses about: (1) the primary drivers of gene content evolution, (2) the repeatability of patterns in gene loss and retention after WGD, and (3) the early evolution of orphan genes. This research will contribute to attempts to develop ash trees resistant to ash dieback, for EU ecological restoration.

 Publications

year authors and title journal last update
List of publications.
2016 Endymion D. Cooper
Data archiving – editorial
published pages: i, ISSN: 1030-1887, DOI: 10.1071/SBv29n1_ED
Australian Systematic Botany 29/1 2019-06-18
2016 Endymion D. Cooper
Botanical capital
published pages: i, ISSN: 1030-1887, DOI: 10.1071/SBv29n3_ED1
Australian Systematic Botany 29/3 2019-06-18
2016 Endymion D. Cooper
Plant Evolution: Evolving Antagonistic Gene Regulatory Networks
published pages: R493-R495, ISSN: 0960-9822, DOI: 10.1016/j.cub.2016.05.015
Current Biology 26/12 2019-06-18
2015 Charles Francis Delwiche, Endymion Dante Cooper
The Evolutionary Origin of a Terrestrial Flora
published pages: R899-R910, ISSN: 0960-9822, DOI: 10.1016/j.cub.2015.08.029
Current Biology 25/19 2019-06-18
2016 Elizabeth S. A. Sollars, Andrea L. Harper, Laura J. Kelly, Christine M. Sambles, Ricardo H. Ramirez-Gonzalez, David Swarbreck, Gemy Kaithakottil, Endymion D. Cooper, Cristobal Uauy, Lenka Havlickova, Gemma Worswick, David J. Studholme, Jasmin Zohren, Deborah L. Salmon, Bernardo J. Clavijo, Yi Li, Zhesi He, Alison Fellgett, Lea Vig McKinney, Lene Rostgaard Nielsen, Gerry C. Douglas, Erik Dahl Kjær, J. Allan Downie, David Boshier, Steve Lee, Jo Clark, Murray Grant, Ian Bancroft, Mario Caccamo, Richard J. A. Buggs
Genome sequence and genetic diversity of European ash trees
published pages: 212-216, ISSN: 0028-0836, DOI: 10.1038/nature20786
Nature 541/7636 2019-06-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FRAXIFAM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FRAXIFAM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEMOS (2019)

Disfluencies and Eye MOvements during Speech: what can they reveal about language production?

Read More  

NeoPur (2019)

New treatments and novel diagnostic tests for neonatal seizures based on purinergic signaling.

Read More  

FOCUSIS (2020)

Focal volume Control Using Structured Illumination Sources

Read More