Opendata, web and dolomites

CP-RehOP

Responding or not responding to training; prediction of balance rehabilitation outcome from structural and functional brain networks in Cerebral Palsy.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CP-RehOP project word cloud

Explore the words cloud of the CP-RehOP project. It provides you a very rough idea of what is the project "CP-RehOP" about.

effectiveness    brain    disorders    examine    children    combination    responsive    mixed    neuroplastic    muscle    magnetic    first    balance    innovative    occurs    identification    responsiveness    kurtosis    cp    treatment    quality    individual    imaging    prevalence    cerebral    developmental    world    behavioral    deficit    gait    combined    suggested    tool    diagnose    causes    mobility    sensorimotor    experiment    images    revealed    postural    insights    imbalance    measuring    scales    networks    learning    structural    child    resonance    1000    prediction    when    assessments    provides    weakness    independent    poor    basic    primary    hypothesized    clinical    risk    ataxia    physical    medical    functional    neurological    machine    rehabilitation    diffusion    training    daily    injury    diagnostic    fundamental    births    neural    disability    underlying    falls    unknown    abnormal    experimental    resting    life    palsy    components    depends    live   

Project "CP-RehOP" data sheet

The following table provides information about the project.

Coordinator
STICHTING VUMC 

Organization address
address: DE BOELELAAN 1117
city: AMSTERDAM
postcode: 1081 HV
website: www.vumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://www.vumc.nl/afdelingen/revalidatiegeneeskunde/map/CP-RehOP/
 Total cost 177˙598 €
 EC max contribution 177˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING VUMC NL (AMSTERDAM) coordinator 177˙598.00
2    STICHTING VU NL (AMSTERDAM) participant 0.00

Map

 Project objective

When an injury occurs to the developing brain, as in Cerebral Palsy (CP), these children typically experience sensorimotor disorders such as muscle weakness, abnormal muscle activity, and ataxia. Poor balance control is a primary deficit in CP, which has a large impact on a child’s daily life, since it is crucial for independent mobility and greatly affects the risk of falls. CP is the most common developmental cause of physical disability in the world, with a prevalence of 2-3 in 1000 live births. To improve their quality of life, adequate treatment is essential. However, studies investigating the effectiveness of balance rehabilitation in CP have revealed mixed results. This is due to two reasons. First, due to the various clinical scales and experimental measures available, each measuring different components of balance, it is very complex to diagnose balance control in CP. Second, it is currently unknown which are the underlying neural causes of poor balance control in CP. Since the success of well-targeted treatment depends on this basic knowledge, a novel experiment is suggested that provides fundamental insights in both areas. I will investigate whether balance training can promote postural and gait balance control in CP children. Clinical and experimental measures will be combined to allow for the determination of the best diagnostic tool for imbalance in CP. Using diffusion kurtosis imaging and resting state functional magnetic resonance imaging, I will examine the structural and functional brain networks involved in balance control in CP and whether advances in balance control are supported by neuroplastic changes. As some children will be less responsive to training, it is hypothesized that this innovative combination of behavioral and neurological assessments allows for the identification of the underlying causes of responsiveness, and, most importantly, the prediction of individual responsiveness based on medical brain images, using machine learning.

 Publications

year authors and title journal last update
List of publications.
2017 Pieter Meyns, Jaap Harlaar, Laura van de Pol, Frederik Barkhof, Annemieke Buizer
Can Virtual Reality games improve scores on clinical balance scales in children with cerebral palsy: preliminary results of a randomized controlled clinical trial
published pages: 234-235, ISSN: 0966-6362, DOI: 10.1016/j.gaitpost.2017.06.390
Gait & Posture 57 2019-07-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CP-REHOP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CP-REHOP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

CLIMACY (2020)

Practices of Climate Diplomacy and Uneven Policy Responses on Climate Change on Human Mobility

Read More  

DIGILEAD (2020)

Digital leadership, well-being and performance in organizations

Read More