Opendata, web and dolomites

CP-RehOP

Responding or not responding to training; prediction of balance rehabilitation outcome from structural and functional brain networks in Cerebral Palsy.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CP-RehOP project word cloud

Explore the words cloud of the CP-RehOP project. It provides you a very rough idea of what is the project "CP-RehOP" about.

deficit    gait    ataxia    revealed    identification    unknown    images    births    provides    life    resonance    responsive    palsy    prediction    disorders    independent    primary    live    weakness    combination    behavioral    neural    causes    balance    imbalance    magnetic    injury    mobility    rehabilitation    child    quality    falls    training    structural    suggested    treatment    cp    basic    prevalence    responsiveness    fundamental    hypothesized    developmental    children    measuring    resting    mixed    depends    underlying    scales    brain    experimental    clinical    imaging    postural    occurs    disability    functional    sensorimotor    kurtosis    cerebral    medical    world    physical    insights    innovative    neuroplastic    abnormal    neurological    risk    diagnose    examine    muscle    combined    learning    daily    effectiveness    diffusion    1000    diagnostic    when    components    poor    networks    first    machine    experiment    assessments    tool    individual   

Project "CP-RehOP" data sheet

The following table provides information about the project.

Coordinator
STICHTING VUMC 

Organization address
address: DE BOELELAAN 1117
city: AMSTERDAM
postcode: 1081 HV
website: www.vumc.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Project website https://www.vumc.nl/afdelingen/revalidatiegeneeskunde/map/CP-RehOP/
 Total cost 177˙598 €
 EC max contribution 177˙598 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    STICHTING VUMC NL (AMSTERDAM) coordinator 177˙598.00
2    STICHTING VU NL (AMSTERDAM) participant 0.00

Map

 Project objective

When an injury occurs to the developing brain, as in Cerebral Palsy (CP), these children typically experience sensorimotor disorders such as muscle weakness, abnormal muscle activity, and ataxia. Poor balance control is a primary deficit in CP, which has a large impact on a child’s daily life, since it is crucial for independent mobility and greatly affects the risk of falls. CP is the most common developmental cause of physical disability in the world, with a prevalence of 2-3 in 1000 live births. To improve their quality of life, adequate treatment is essential. However, studies investigating the effectiveness of balance rehabilitation in CP have revealed mixed results. This is due to two reasons. First, due to the various clinical scales and experimental measures available, each measuring different components of balance, it is very complex to diagnose balance control in CP. Second, it is currently unknown which are the underlying neural causes of poor balance control in CP. Since the success of well-targeted treatment depends on this basic knowledge, a novel experiment is suggested that provides fundamental insights in both areas. I will investigate whether balance training can promote postural and gait balance control in CP children. Clinical and experimental measures will be combined to allow for the determination of the best diagnostic tool for imbalance in CP. Using diffusion kurtosis imaging and resting state functional magnetic resonance imaging, I will examine the structural and functional brain networks involved in balance control in CP and whether advances in balance control are supported by neuroplastic changes. As some children will be less responsive to training, it is hypothesized that this innovative combination of behavioral and neurological assessments allows for the identification of the underlying causes of responsiveness, and, most importantly, the prediction of individual responsiveness based on medical brain images, using machine learning.

 Publications

year authors and title journal last update
List of publications.
2017 Pieter Meyns, Jaap Harlaar, Laura van de Pol, Frederik Barkhof, Annemieke Buizer
Can Virtual Reality games improve scores on clinical balance scales in children with cerebral palsy: preliminary results of a randomized controlled clinical trial
published pages: 234-235, ISSN: 0966-6362, DOI: 10.1016/j.gaitpost.2017.06.390
Gait & Posture 57 2019-07-24

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CP-REHOP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CP-REHOP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ARMOUR (2020)

smARt Monitoring Of distribUtion netwoRks for robust power quality

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

SSHelectPhagy (2019)

Regulation of Selective autophagy by sulfide through persulfidation of protein targets.

Read More