Opendata, web and dolomites

DrugsUP

Solute carrier proteins and the uptake of cytotoxic approved drugs

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "DrugsUP" data sheet

The following table provides information about the project.

Coordinator
CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH 

Organization address
address: LAZARETTGASSE 14 AKH BT 25.3
city: WIEN
postcode: 1090
website: http://www.oeaw.ac.at/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Project website http://cemm.at/research/projects/fellowships/ec-msca-postdoc-fellowship-drugs-up/
 Total cost 178˙156 €
 EC max contribution 178˙156 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2015
 Duration (year-month-day) from 2015-05-01   to  2017-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CEMM - FORSCHUNGSZENTRUM FUER MOLEKULARE MEDIZIN GMBH AT (WIEN) coordinator 178˙156.00

Map

 Project objective

The transport of nutrients and metabolites across lipid membranes is a critical and essential biological process in both normal and pathological conditions. Specialized integral membrane proteins known as transporters are responsible for the movement of virtually any known class of biologically active molecules across membranes. Perhaps not surprisingly, there is increasing evidence that many drugs in clinical use also employ carried-mediated transport as the predominant entry method into the cell. Understanding the molecular and physiological basis of transporter-mediated drug uptake is therefore a key step toward the development of improved pharmacokinetics and models of toxicity for current and future therapeutically active compounds. We hypothesize that most approved drugs may require specific members of the solute carrier (SLC) family to cross the cell membrane, a phenomenon that would directly affect the compound activity, and that this process is basically underestimated in its importance. To test this hypothesis, the study proposed here aims at identifying SLC transporters involved in the uptake of a well-characterized set of commercialized drugs. The CeMM Library Of Unique Drugs (CLOUD) is a library of 300 compounds selected to be representative of the chemical space covered by all commercially available drugs. Human cell lines carrying deletions on specific SLC proteins will be tested for their ability to resist toxicity or challenges due to CLOUD compounds, allowing us to determine which transporter or family of transporters are involved in the uptake of specific drugs classes. The information derived from these studies will represent an important step forward toward a systematic characterization of the role of carrier-mediated transport in drug uptake.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DRUGSUP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DRUGSUP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

INSPiRE (2018)

The Influence of Information Search on Preference Formation and Choice

Read More  

Topo-circuit (2019)

Exploring topological phenomenon in RF circuits

Read More