Opendata, web and dolomites

HybridSolarFuels SIGNED

Efficient Photoelectrochemical Transformation of CO2 to Useful Fuels on Nanostructured Hybrid Electrodes

Total Cost €


EC-Contrib. €






 HybridSolarFuels project word cloud

Explore the words cloud of the HybridSolarFuels project. It provides you a very rough idea of what is the project "HybridSolarFuels" about.

goals    kinetic    facile    flow    polyaniline    custom    nanostructured    adsorption    rates    reaction    considerable    water    point    performing    gas    valuable    environmental    co2    barriers    designed    given    gain    mass    photoelectrochemistry    cells    photoelectrochemical    materials    rationally    containing    nature    absorption    configurations    electron    proven    transportation    hybrid    practical    accelerate    rewards    methanol    levels    responsible    morphological    conducting    cumo2    emissions    size    photoelectrochemically    polymers    overcome    semiconductors    energy    remediation    cathode    limitations    surfaces    material    fundamental    liquid    selectivity    adsorber    sense    functional    fuels    electrode    stability    group    simultaneously    added    avenue    surface    carefully    assemble    photocathode    photocurrents    nanoscale    transport    synthesize    area    charge    convert    behavior    generation    cupbi3    reactors    simultaneous    splitting    solar    pec    enormous    cell    transfer    nanostructures    alternative    light    greenhouse    source    carbon    sic    sunlight   

Project "HybridSolarFuels" data sheet

The following table provides information about the project.


Organization address
address: DUGONICS TER 13
city: SZEGED
postcode: 6720

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Hungary [HU]
 Project website
 Total cost 1˙498˙750 €
 EC max contribution 1˙498˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2021-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    SZEGEDI TUDOMANYEGYETEM HU (SZEGED) coordinator 1˙498˙750.00


 Project objective

Given that CO2 is a greenhouse gas, using the energy of sunlight to convert CO2 to transportation fuels (such as methanol) represents a value-added approach to the simultaneous generation of alternative fuels and environmental remediation of carbon emissions. Photoelectrochemistry has been proven to be a useful avenue for solar water splitting. CO2 reduction, however, is multi-electron in nature (e.g., 6 e- to methanol) with considerable kinetic barriers to electron transfer. It therefore requires the use of carefully designed electrode surfaces to accelerate e- transfer rates to levels that make practical sense. In addition, novel flow-cell configurations have to be designed to overcome mass transport limitations of this reaction. We are going to design and assemble nanostructured hybrid materials to be simultaneously applied as both adsorber and cathode-material to photoelectrochemically convert CO2 to valuable liquid fuels. The three main goals of this project are to (i) gain fundamental understanding of morphological-, size-, and surface functional group effects on the photoelectrochemical (PEC) behavior at the nanoscale (ii) design and synthesize new functional hybrid materials for PEC CO2 reduction, (iii) develop flow-reactors for PEC CO2 reduction. Rationally designed hybrid nanostructures of large surface area p-type semiconductors (e.g., SiC, CuMO2, or CuPbI3) and N-containing conducting polymers (e.g., polyaniline-based custom designed polymers) will be responsible for: (i) higher photocurrents due to facile charge transfer and better light absorption (ii) higher selectivity towards the formation of liquid fuels due to the adsorption of CO2 on the photocathode (iii) better stability of the photocathode. The challenges are great, but the possible rewards are enormous: performing CO2 adsorption and reduction on the same system may lead to PEC cells which can be deployed directly at the source point of CO2, which would go well beyond the state-of-the-art.


year authors and title journal last update
List of publications.
2019 Dorottya Hursán, Angelika A. Samu, László Janovák, Kateryna Artyushkova, Tristan Asset, Plamen Atanassov, Csaba Janáky
Morphological Attributes Govern Carbon Dioxide Reduction on N-Doped Carbon Electrodes
published pages: 1-5, ISSN: 2542-4351, DOI: 10.1016/j.joule.2019.05.007
Joule 2019-09-04
2019 B. Endrődi, E. Kecsenovity, A. Samu, F. Darvas, R. V. Jones, V. Török, A. Danyi, C. Janáky
Multilayer Electrolyzer Stack Converts Carbon Dioxide to Gas Products at High Pressure with High Efficiency
published pages: 1770-1777, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.9b01142
ACS Energy Letters 2019-09-04
2019 Gergely F. Samu, Ádám Balog, Filippo De Angelis, Daniele Meggiolaro, Prashant V. Kamat, Csaba Janáky
Electrochemical Hole Injection Selectively Expels Iodide from Mixed Halide Perovskite Films
published pages: , ISSN: 0002-7863, DOI: 10.1021/jacs.9b04568
Journal of the American Chemical Society 2019-09-04
2017 Egon Kecsenovity, Balázs Endrődi, Péter S. Tóth, Yuqin Zou, Robert A. W. Dryfe, Krishnan Rajeshwar, Csaba Janáky
Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids
published pages: 6682-6692, ISSN: 0002-7863, DOI: 10.1021/jacs.7b01820
Journal of the American Chemical Society 139/19 2019-06-13
2017 Rebecca A. Scheidt, Gergely F. Samu, Csaba Janáky, Prashant V. Kamat
Modulation of Charge Recombination in CsPbBr 3 Perovskite Films with Electrochemical Bias
published pages: 86-89, ISSN: 0002-7863, DOI: 10.1021/jacs.7b10958
Journal of the American Chemical Society 140/1 2019-06-13
2017 Richard Jones, Ferenc Darvas, Csaba Janáky
New space for chemical discoveries
published pages: 55, ISSN: 2397-3358, DOI: 10.1038/s41570-017-0055
Nature Reviews Chemistry 1/7 2019-06-13
2018 Krishnan Rajeshwar, Mohammad Kabir Hossain, Robin T. Macaluso, Csaba Janáky, Andras Varga, Pawel J. Kulesza
Review—Copper Oxide-Based Ternary and Quaternary Oxides: Where Solid-State Chemistry Meets Photoelectrochemistry
published pages: H3192-H3206, ISSN: 0013-4651, DOI: 10.1149/2.0271804jes
Journal of The Electrochemical Society 165/4 2019-06-13
2018 Dorottya Hursán, Csaba Janáky
Electrochemical Reduction of Carbon Dioxide on Nitrogen-Doped Carbons: Insights from Isotopic Labeling Studies
published pages: 722-723, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.8b00212
ACS Energy Letters 3/3 2019-06-13
2018 Balázs Endrődi, Egon Kecsenovity, Krishnan Rajeshwar, Csaba Janáky
One-Step Electrodeposition of Nanocrystalline TiO 2 Films with Enhanced Photoelectrochemical Performance and Charge Storage
published pages: 851-858, ISSN: 2574-0962, DOI: 10.1021/acsaem.7b00289
ACS Applied Energy Materials 1/2 2019-06-13
2018 Gergely F. Samu, Rebecca A. Scheidt, Gary Zaiats, Prashant V. Kamat, Csaba Janáky
Electrodeposition of Hole-Transport Layer on Methylammonium Lead Iodide Film: A Strategy To Assemble Perovskite Solar Cells
published pages: 4202-4206, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.8b01521
Chemistry of Materials 30/13 2019-06-13
2017 B. Endrődi, G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar, C. Janáky
Continuous-flow electroreduction of carbon dioxide
published pages: 133-154, ISSN: 0360-1285, DOI: 10.1016/j.pecs.2017.05.005
Progress in Energy and Combustion Science 62 2019-06-13
2017 András Sápi, András Varga, Gergely F. Samu, Dorina Dobó, Koppány L. Juhász, Bettina Takács, Erika Varga, Ákos Kukovecz, Zoltán Kónya, Csaba Janáky
Photoelectrochemistry by Design: Tailoring the Nanoscale Structure of Pt/NiO Composites Leads to Enhanced Photoelectrochemical Hydrogen Evolution Performance
published pages: 12148-12158, ISSN: 1932-7447, DOI: 10.1021/acs.jpcc.7b00429
The Journal of Physical Chemistry C 121/22 2019-06-13
2018 Gergely F. Samu, Rebecca A. Scheidt, Prashant V. Kamat, Csaba Janáky
Electrochemistry and Spectroelectrochemistry of Lead Halide Perovskite Films: Materials Science Aspects and Boundary Conditions
published pages: 561-569, ISSN: 0897-4756, DOI: 10.1021/acs.chemmater.7b04321
Chemistry of Materials 30/3 2019-06-13
2019 Ádám Balog, Csaba Janáky
The Effect of Trap States on the Optoelectronic Properties of Nanoporous Nickel Oxide
published pages: H3265-H3270, ISSN: 0013-4651, DOI: 10.1149/2.0361905jes
Journal of The Electrochemical Society 166/5 2019-06-06
2019 Gergely F. Samu, Rebecca A. Scheidt, Ádám Balog, Csaba Janáky, Prashant V. Kamat
Tuning the Excited-State Dynamics of CuI Films with Electrochemical Bias
published pages: 702-708, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.9b00182
ACS Energy Letters 4/3 2019-06-06
2019 Ádám Balog, Gergely F. Samu, Prashant V. Kamat, Csaba Janáky
Optoelectronic Properties of CuI Photoelectrodes
published pages: 259-264, ISSN: 1948-7185, DOI: 10.1021/acs.jpclett.8b03242
The Journal of Physical Chemistry Letters 10/2 2019-06-06
2019 Ahmed Mohsen Ismail, Gergely F. Samu, Ádám Balog, Edit Csapó, Csaba Janáky
Composition-Dependent Electrocatalytic Behavior of Au–Sn Bimetallic Nanoparticles in Carbon Dioxide Reduction
published pages: 48-53, ISSN: 2380-8195, DOI: 10.1021/acsenergylett.8b01996
ACS Energy Letters 4/1 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYBRIDSOLARFUELS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYBRIDSOLARFUELS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOMENS (2020)

The evolution of menstruation in primates

Read More  


The Mass Politics of Disintegration

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More