Opendata, web and dolomites

ThforPV SIGNED

New Thermodynamic for Frequency Conversion and Photovoltaics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ThforPV project word cloud

Explore the words cloud of the ThforPV project. It provides you a very rough idea of what is the project "ThforPV" about.

ir    opens       photovoltaic    cells    cell    phonons    constraints    10    maximum    single    hot    shockley    match    lower    disruptive    photon    energy    enhancement    optics    validation    thermal    splitting    emission    limit    ten    emitters    orders    coherence    queisser    107    69    pvs    overcome    nonlinear    efficiencies    experimentally    thermalization    magnitude    theoretical    30    thermodynamic    temperature    nlo    efficiency    fusing       energetic    showing    entropy    bulk    light    generates    accessible    ideas    below    preliminary    fold    offers    innovation    matches    radiation    push    lose    coupling    total    solar    harness    heat    junction    otherwise    refrigeration    generate    event    inefficient    incoherent    frequency    lost    harvesting    conversion    theory    27    photons    efficient       prior    excitation    pv    optical    limits    experimental    bandgap    sq    irrespective    si    near    continue    intensity    photovoltaics    ultra    internal   

Project "ThforPV" data sheet

The following table provides information about the project.

Coordinator
TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY 

Organization address
address: SENATE BUILDING TECHNION CITY
city: HAIFA
postcode: 32000
website: www.technion.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Project website https://excitonics.net.technion.ac.il/
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2020-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY IL (HAIFA) coordinator 1˙500˙000.00

Map

 Project objective

'The Shockley Queisser (SQ) limits the efficiency of single junction photovoltaic (PV) cells and sets the maximum efficiency for Si PV at about 30%. This is because of two constraints: i. The energy PV generates at each conversion event is set by its bandgap, irrespective of the photon’s energy. Thus, energetic photons lose most of their energy to heat. ii. PV cannot harness photons at lower energy than its bandgap. Therefore, splitting energetic photons, and fusing two photons each below the Si bandgap to generate one higher-energy photon that match the PV, push the potential efficiency above the Shockley Queisser limit. Nonlinear optics (NLO) offers efficient frequency conversion, yet it is inefficient at the intensity and the coherence level of solar and thermal radiation. Here I propose new thermodynamic concepts for frequency conversion of partially incoherent light aiming to overcome the SQ limit for single junction PVs. Specifically, I propose entropy driven up-conversion of low energy photons such as in thermal radiation to emission that matches Si PV cell. This concept is based on coupling 'hot phonons' to Near-IR emitters, while the bulk remains at low temperature. As preliminary results we experimentally demonstrate entropy-driven ten-fold up-conversion of 10.6m excitation to 1m at internal efficiency of 27% and total efficiency of 10%. This is more efficient by orders of magnitude from any prior art, and opens the way for efficient up-conversion of thermal radiation. We continue by applying similar thermodynamic ideas for harvesting the otherwise lost thermalization in single junction PVs and present the concept of 'optical refrigeration for ultra-efficient PV' with theoretical efficiencies as high as 69%. We support the theory by experimental validation, showing enhancement in photon energy of 107% and orders of magnitude enhancement in the number of accessible photons for high-bandgap PV. This opens the way for disruptive innovation in photovoltaics'

 Publications

year authors and title journal last update
List of publications.
2016 Dafna Granot, Nimrod Kruger, Assaf Manor, Carmel Rotschild
Efficient 10-Fold Upconversion through Steady-State Non-Thermal-Equilibrium Excitation
published pages: 174-178, ISSN: 2330-4022, DOI: 10.1021/acsphotonics.5b00481
ACS Photonics 3/2 2019-05-29
2018 N Kruger, M Kurtulik, N Revivo, A Manor, T Sabapathy, C Rotschild
Thermally enhanced photoluminescence for energy harvesting: from fundamentals to engineering optimization
published pages: 54002, ISSN: 2040-8978, DOI: 10.1088/2040-8986/aab87c
Journal of Optics 20/5 2019-05-27
2016 Svetlana V Boriskina1, Martin A Green, Kylie Catchpole, Eli Yablonovitch4, Matthew C Beard, Yoshitaka Okada, Stephan Lany, Talia Gershon, Andriy Zakutayev, Mohammad H Tahersima, Volker J Sorger, Michael J Naughton, Krzysztof Kempa, Mario Dagenais, Yuan Yao, Lu Xu, Xing Sheng, Noah D Bronstein14, John A Rogers12,13, A Paul Alivisatos14,4,24, Ralph G Nuzzo, Jeffrey M Gordon, Di M Wu, Michael D Wisser, Alberto Salleo, Jennifer Dionne, Peter Bermel, Jean-Jacques Greffet, Ivan Celanovic, Marin Soljacic, Assaf Manor, Carmel Rotschild, Aaswath Raman, Linxiao Zhu, Shanhui Fan, and Gang Chen
Roadmap on optical energy conversion
published pages: 38-39, ISSN: 2040-8978, DOI: 10.1088/2040-8978/18/7/073004
Journal of Optics 2019-05-27
2015 A. Manor, Leopoldo Martin, and Carmel Rotschild
Conservation of photon rate in endothermic photoluminescence and its transition to thermal emission
published pages: 585-588, ISSN: 2041-1723, DOI: 10.1364/OPTICA.2.000585
Optica 2019-05-27
2016 Assaf Manor, Nimrod Kruger, Tamilarasan Sabapathy, Carmel Rotschild
Thermally enhanced photoluminescence for heat harvesting in photovoltaics
published pages: 13167, ISSN: 2041-1723, DOI: 10.1038/ncomms13167
Nature Communications 7 2019-05-27

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THFORPV" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THFORPV" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROTECHT (2020)

Providing RObust high TECHnology Tags based on linear carbon nanostructures

Read More  

CONT-END (2018)

Attempts to Control the End of Life in People with Dementia: Two-level Approach to Examine Controversies

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More