Opendata, web and dolomites

PICSIMA

Next generation 3D print technology (PICSIMA), which for the first time enables the direct full colour printing of silicone to make soft tissue prostheses, orthoses and removable partial dentures.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PICSIMA project word cloud

Explore the words cloud of the PICSIMA project. It provides you a very rough idea of what is the project "PICSIMA" about.

assembly    device    feasibility    full    printer    accurate    print    rpd    prostheses    fit    time    validation    parts    manufacturing    first    commercialise    designs    providers    goes    re    gaskets    frameworks    multiplicity    spine    lower    impression    moulding    severe    opportunity    replace    repairs    72    prone    markets    stages    expensive    tear    ears    moulds    modifying    partial    supporting    faster    manufacture    custom    silicone    body    assist    mould    rapid    leads    prototype    dreams    3d    prior    market    occasionally    relative    seals    colour    billion    removable    strength    tissue    limbs    geometries    moulded    solutions    error    soft    industrial    nose    artificial    size    world    printing    constraints    consuming    dentures    technological    costly    varying    softness    industry    final    walled    medical    fripp    thin    surpasses    external    optimal    freedoms    sub    movement    painting    prevent    innovative    patient    orthoses    alterations   

Project "PICSIMA" data sheet

The following table provides information about the project.

Coordinator
FRIPP DESIGN LIMITED 

Organization address
address: 56 ROSAMOND AVENUE BRADWAY
city: SHEFFIELD
postcode: S17 4LT
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.picsima.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
2. H2020-EU.2.1.2. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies)
 Code Call H2020-SMEINST-1-2014
 Funding Scheme SME-1
 Starting year 2015
 Duration (year-month-day) from 2015-06-01   to  2015-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FRIPP DESIGN LIMITED UK (SHEFFIELD) coordinator 50˙000.00

Map

 Project objective

Prostheses are artificial body parts, which can also be soft tissue such as the nose and ears, and orthoses are external artificial devices for supporting the limbs or spine or to prevent/assist relative movement. The current manufacturing process of these involves first taking an impression from the patient, making the mould, hand painting it and then modifying it to fit. The making of moulds is prone to error and occasionally leads to sub-optimal designs involving re-makes, alterations and repairs. Moulding also has severe constraints particularly where complex geometries and thin walled parts are required and it does not allow for varying of softness and tear strength within the moulded part. The multiplicity of stages in the manufacture of these custom parts makes the moulding process very expensive and time consuming. Fripp Design and Research, one of Europe's leading providers of innovative 3D print solutions, seeks to commercialise a new method for the rapid manufacture of soft tissue prostheses by developing the world’s first full colour silicone 3D Printer to replace the current moulding manufacturing method that is time consuming, highly variable and very costly. The use of faster and highly accurate 3D printing technology in the medical devices industry will not only lower costs by up to 72% but will also open up new design freedoms that prior to this were only dreams. The 3D printer developed can also be used in making orthoses and removable partial dentures (RPD) frameworks using silicone. The market opportunity goes beyond medical devices, into the high growth industrial gaskets and seals, where the market size surpasses €20 billion. The Feasibility Study will establish the technological and manufacturing capabilities of the printing device and determine the potential medical and industrial markets for the application of our product. Final prototype assembly, testing and validation will be done within the Phase 2 project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PICSIMA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PICSIMA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.3.1.;H2020-EU.2.1.2.)

INFINITE (2015)

INnovative laser machine For INdustrial engravIng and 3d TExturing

Read More  

NANOHIGH (2015)

High volume production facility for high accuracy nanocapsules

Read More  

FREE-D (2015)

CNC dynamic mold for producing freely curved glass panels

Read More