Opendata, web and dolomites

GLION

Investigating glial glycogen utilization for ion homeostasis in the brain and its relevance to epileptogenesis: electrophysiology and pharmacology in awake behaving mice

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GLION project word cloud

Explore the words cloud of the GLION project. It provides you a very rough idea of what is the project "GLION" about.

extracellular    human    constraints    aberrations    mechanisms    homeostasis    skills    underlying    metabolism    brain    glycogen    influences    epilepsy    insights    impairment    kinetic    consumption    awake    outcomes    basis    seizures    cultures    ion    preliminary    experiments    excitability    demonstrated    energy    molecules    efficiency    characterization    controls    behaving    mice    cellular    epileptogenic    metabolic    mammalian    techniques    requirement    potassium    operations    tackle    animals    experimental    susceptibility    magnetic    transmitter    dependent    first    stages    fueled    normal    signaling    cells    compounds    sole    functional    career    understand    neuronal    pharmacological    time    expertise    primary    hypothesize    glucose    glycogenolysis    resonance    substantial    released    subjects    cerebral    pathologies    complement    supports    ideas    electrophysiological    cell    neuronally    critical    astrocytic    space    astrocytes    interactions    store    invasive    dysfunction   

Project "GLION" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Project website http://www.glion.eu/
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-03-01   to  2018-02-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 212˙194.00

Map

 Project objective

We do not yet fully understand the cellular basis of brain energy metabolism. The high energy consumption of mammalian brain sets information processing under critical metabolic constraints. Energy efficiency in brain signaling is supported by functional and metabolic interactions between neuronal and astrocytic cells. Specifically, during neuronal activity astrocytes rapidly take up neuronally-released compounds from the extracellular space, including potassium (K) and transmitter molecules. These operations affect brain excitability and their dysfunction can increase susceptibility to seizures and eventually lead to epilepsy. Importantly, ion homeostasis in astrocytes is fueled by astrocytic glycogen, the sole cerebral energy store. The primary aim of the present project is to investigate how metabolism of glycogen in astrocytes supports and influences the different stages of neuronal activity under normal and epileptogenic conditions. I hypothesize that K-induced glycogenolysis in astrocytes controls neuronal excitability (functional role) as well as neuronal glucose uptake (metabolic role). These ideas are supported by the recently demonstrated requirement of astrocytic glycogenolysis for the uptake of extracellular K obtained in cell cultures and by preliminary results that I obtained through kinetic analysis. The present project will tackle, for the first time in awake behaving mice, the characterization of activity-dependent brain glycogen metabolism by means of electrophysiological and pharmacological experiments. The outcomes will provide essential insights into the mechanisms underlying normal ion homeostasis and its impairment in epilepsy as well as other pathologies related to aberrations in brain energy metabolism. The project will have a substantial impact on my career, as new skills in invasive experimental techniques on awake animals will complement my previous expertise in non-invasive functional magnetic resonance methods on human subjects.

 Publications

year authors and title journal last update
List of publications.
2017 Mauro DiNuzzo, Federico Giove, Bruno Maraviglia, Silvia Mangia
Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate
published pages: 202-216, ISSN: 0364-3190, DOI: 10.1007/s11064-016-2048-0
Neurochemical Research 42/1 2019-06-13
2017 Mauro DiNuzzo, Simon Sanggaard, Serhii Kostrikov, Anna Xavier, Sofie Christensen, Blanca Aldana, Lasse Bak, Ursula Sonnewald, Arne Schousboe, Helle Waagepetersen, Maiken Nedergaard
Intracisternal injection of [U-13C]glucose for investigating brain metabolism in freely moving mice
published pages: 146, ISSN: 0022-3042, DOI:
Journal of Neurochemistry 142 2019-06-13
2017 Mauro DiNuzzo, Maiken Nedergaard
Brain energetics during the sleep–wake cycle
published pages: 65-72, ISSN: 0959-4388, DOI: 10.1016/j.conb.2017.09.010
Current Opinion in Neurobiology 47 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GLION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GLION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

INFANTPATTERNS (2019)

Development of kinematic and muscle patterns in preterm infants

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More