Opendata, web and dolomites

BioExtrusion SIGNED

Natural functional plasticizers for controlled protein folding and extrusion into biomaterials.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BioExtrusion project word cloud

Explore the words cloud of the BioExtrusion project. It provides you a very rough idea of what is the project "BioExtrusion" about.

first    hope    polymer    occurs    spun    green    aggregation    alone    nature    time    question    soluble    luxilon    environmental    spinning    polyphenol    ph    extended    disciplines    solid    natural    ion    transformation    spin    supervised    company    tuned    gland    extruded    polymeric    medical    never    whereby    proteins    with    finely    silk    stress    beta    quite    ugent    moths    concentration    successful    global    tackle    social    experts    organic    grail    compounds    raised    hypothesis    impacting    converting    answer    cold    water    spiders    polyphenolic    form    succeeded    converted    industrial    induce    combining    extrusion    techniques    material    ambient    materials    expertise    ing    answered    fibre    removal    holy    world    date    structural    solution    sheet    complementary    biology    pollution    sciences    align    biomaterials    conversion    secondment    diseases    formulate    data    biopolymers    protein    molecules    structures    chemistry    molecular    small    removing    missing   

Project "BioExtrusion" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITEIT GENT 

Organization address
address: SINT PIETERSNIEUWSTRAAT 25
city: GENT
postcode: 9000
website: http://www.ugent.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website https://www.ugent.be/en/research/research-ugent/trackrecord/trackrecord-h2020/msca-h2020/msca-itn-bioextrusion.htm
 Total cost 160˙800 €
 EC max contribution 160˙800 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2018-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT GENT BE (GENT) coordinator 160˙800.00

Map

 Project objective

With a raised global awareness of industrial environmental pollution, the polymer research is focusing on green biopolymers. The spinning gland of spiders and silk moths is the holy grail in green extrusion, as silk is spun at ambient conditions and is water based. This is achieved by finely tuned spinning parameters in the silk gland (pH, ion concentration, stress and water removal), whereby the soluble silk solution is converted into a solid fibre. To date, no one has ever succeeded in spinning at these ambient conditions, used in the natural spinning system.

In this project, one missing spinning parameter will be investigated, namely small molecules, in the form of polyphenolic compounds, that are also extruded together with the silk. We formulate the hypothesis that these small molecules help to align and may even induce β-sheet aggregation by removing the water necessary for converting the silk protein solution into a solid fibre during spinning. As this same aggregation of proteins also occurs in many diseases, we will tackle this hypothesis with different techniques from quite different disciplines namely organic chemistry, structural-molecular biology and polymeric sciences. In this way we hope to answer our question that could never be answered by one field alone, as these disciplines will provide complementary data.

In a first phase, the polyphenol-induced conversion of proteins to β-sheet structures will be investigated, necessary for a successful transformation of a protein solution into a solid material, supervised by world-leading experts (UGent). In a second phase, this knowledge will be applied for the cold extrusion of protein-based materials in the secondment, a company Luxilon, with extended expertise in fibre extrusion technology. Combining the knowledge of both partners, will enable us to spin protein-based biomaterials like nature does for the first time, resulting in green extrusion, impacting the industrial, medical and social sector.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOEXTRUSION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOEXTRUSION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More