Opendata, web and dolomites

BioExtrusion SIGNED

Natural functional plasticizers for controlled protein folding and extrusion into biomaterials.

Total Cost €


EC-Contrib. €






 BioExtrusion project word cloud

Explore the words cloud of the BioExtrusion project. It provides you a very rough idea of what is the project "BioExtrusion" about.

cold    converting    world    global    chemistry    raised    extrusion    expertise    transformation    nature    extruded    biopolymers    small    occurs    organic    induce    biomaterials    spinning    tackle    experts    structural    concentration    industrial    ing    sheet    water    succeeded    solid    ugent    solution    social    company    missing    form    luxilon    hope    spun    removing    alone    medical    answered    removal    diseases    spiders    combining    polymeric    protein    with    grail    spin    secondment    question    impacting    sciences    successful    whereby    never    ion    polymer    soluble    quite    techniques    molecules    proteins    aggregation    hypothesis    supervised    polyphenolic    first    environmental    beta    pollution    material    finely    data    align    biology    extended    compounds    gland    structures    silk    holy    stress    ph    fibre    time    materials    green    complementary    formulate    molecular    polyphenol    natural    tuned    conversion    answer    date    disciplines    moths    ambient    converted   

Project "BioExtrusion" data sheet

The following table provides information about the project.


Organization address
city: GENT
postcode: 9000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website
 Total cost 160˙800 €
 EC max contribution 160˙800 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-05-01   to  2018-04-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITEIT GENT BE (GENT) coordinator 160˙800.00


 Project objective

With a raised global awareness of industrial environmental pollution, the polymer research is focusing on green biopolymers. The spinning gland of spiders and silk moths is the holy grail in green extrusion, as silk is spun at ambient conditions and is water based. This is achieved by finely tuned spinning parameters in the silk gland (pH, ion concentration, stress and water removal), whereby the soluble silk solution is converted into a solid fibre. To date, no one has ever succeeded in spinning at these ambient conditions, used in the natural spinning system.

In this project, one missing spinning parameter will be investigated, namely small molecules, in the form of polyphenolic compounds, that are also extruded together with the silk. We formulate the hypothesis that these small molecules help to align and may even induce β-sheet aggregation by removing the water necessary for converting the silk protein solution into a solid fibre during spinning. As this same aggregation of proteins also occurs in many diseases, we will tackle this hypothesis with different techniques from quite different disciplines namely organic chemistry, structural-molecular biology and polymeric sciences. In this way we hope to answer our question that could never be answered by one field alone, as these disciplines will provide complementary data.

In a first phase, the polyphenol-induced conversion of proteins to β-sheet structures will be investigated, necessary for a successful transformation of a protein solution into a solid material, supervised by world-leading experts (UGent). In a second phase, this knowledge will be applied for the cold extrusion of protein-based materials in the secondment, a company Luxilon, with extended expertise in fibre extrusion technology. Combining the knowledge of both partners, will enable us to spin protein-based biomaterials like nature does for the first time, resulting in green extrusion, impacting the industrial, medical and social sector.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOEXTRUSION" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOEXTRUSION" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

FrogsInSpace (2019)

From ecology to neurobiology: spatial cognition in rainforest frogs

Read More  

TIPTOP (2019)

Tensoring Positive Maps on Operator Structures

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More