Opendata, web and dolomites


Self and others in the sensorimotor system: a computational neuroanatomy of sensory attenuation

Total Cost €


EC-Contrib. €






 TICKLE ME project word cloud

Explore the words cloud of the TICKLE ME project. It provides you a very rough idea of what is the project "TICKLE ME" about.

neuroanatomical    command    distinguishes    external    perception    neuroimaging    computational    voluntary    time    touches    self    electrical    movement    quality    theory    scientific    programming    parts    human    ing    background    institutet    externally    touch    sensation    profile    tickle    clarify    combines    attenuation    uniquely    me    additionally    little    responsible    resonance    expertise    first    physical    feedback    learns    sa    intense    theoretical    magnetic    karolinska    contact    synergy    behavioural    model    yourself    neurocomputational    predict    generating    experimental    imaging    prof    body    suggests    why    motor    valuable    tactile    attenuate    internal    perceived    predictions    arise    commands    copy    virtual    experiments    error    efference    carry    actions    interdisciplinary    phenomenon    produces    psychophysics    series    suited    identical    modeling    origin    brains    psychology    force    move    engineering    henrik    functional    learning    ehrsson    hypothesized    sensory    neuroscience    mechanisms    brain    sensorimotor    cognitive    principal    host    network   

Project "TICKLE ME" data sheet

The following table provides information about the project.


Organization address
address: Nobels Vag 5
postcode: 17177

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 173˙857 €
 EC max contribution 173˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2019-01-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET SE (STOCKHOLM) coordinator 173˙857.00


 Project objective

Why can’t you tickle yourself? Previous behavioural and neuroimaging evidence suggests that when we move one hand to touch the other, the resulting tactile sensation is perceived as less intense compared to identical touches of external origin. This sensory attenuation (SA) phenomenon is hypothesized to arise because our brains use internal information about the motor command (efference copy) to predict the tactile consequences of the movement and attenuate the tactile feedback based on these predictions. However, little is known about how the brain produces SA. ‘TICKLE ME’ combines, for the first time, computational motor control theory, force perception behavioural experiments, and state-of-the-art neuroimaging methods to address how the human brain distinguishes between self-generated and externally-generated touch. The project aims to: - clarify the principal importance of voluntary motor commands, efference copy, and perceived physical contact of body parts in a series of behavioural experiments - identify the neuroanatomical network responsible for generating SA by using state-of-the-art functional magnetic resonance imaging - investigate how the brain learns to predict the sensory consequences of our actions by using error-driven learning mechanisms - develop a novel neurocomputational model of SA The project will result in a synergy between the applicant’s highly interdisciplinary profile and the high quality of the host institution. The applicant has experience in different scientific areas such as experimental cognitive psychology, psychophysics, virtual reality, computational modeling and programming as well as a background in electrical engineering that makes her uniquely suited to carry out this project. Additionally, the Karolinska Institutet, the Department of Neuroscience, and in particular Prof. Henrik Ehrsson will provide valuable theoretical knowledge in sensorimotor control as well as technical expertise in neuroimaging in support of the project.


year authors and title journal last update
List of publications.
2017 Konstantina Kilteni, H. Henrik Ehrsson
Sensorimotor predictions and tool use: Hand-held tools attenuate self-touch
published pages: 1-9, ISSN: 0010-0277, DOI: 10.1016/j.cognition.2017.04.005
Cognition 165 2019-08-30
2018 Konstantina Kilteni, Benjamin Jan Andersson, Christian Houborg, H. Henrik Ehrsson
Motor imagery involves predicting the sensory consequences of the imagined movement
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-03989-0
Nature Communications 9/1 2019-08-30
2017 Konstantina Kilteni, H. Henrik Ehrsson
Body ownership determines the attenuation of self-generated tactile sensations
published pages: 8426-8431, ISSN: 0027-8424, DOI: 10.1073/pnas.1703347114
Proceedings of the National Academy of Sciences 114/31 2019-08-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TICKLE ME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TICKLE ME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)


Light-REsponsive Nanomachines for Targeted Eradication of BactErial Pathogens in LocaLised InfectIONs

Read More  

Star Polymers (2020)

When Soft Matter Goes Really Soft – A New Paradigm for Star Polymer Self-Assembly

Read More  

IQubitNet (2019)

Integrated multi-qubit devices for scalable quantum networks

Read More