Opendata, web and dolomites

TICKLE ME

Self and others in the sensorimotor system: a computational neuroanatomy of sensory attenuation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TICKLE ME project word cloud

Explore the words cloud of the TICKLE ME project. It provides you a very rough idea of what is the project "TICKLE ME" about.

why    host    sensorimotor    expertise    modeling    parts    actions    sensory    neurocomputational    institutet    intense    tickle    move    quality    externally    produces    ehrsson    identical    yourself    touch    interdisciplinary    voluntary    error    attenuate    internal    principal    model    mechanisms    sensation    neuroanatomical    series    little    brains    theoretical    command    imaging    motor    physical    copy    phenomenon    synergy    ing    experiments    brain    computational    programming    touches    magnetic    human    external    neuroimaging    hypothesized    suited    karolinska    sa    attenuation    first    cognitive    valuable    combines    perceived    contact    distinguishes    additionally    commands    profile    neuroscience    uniquely    learns    prof    force    suggests    resonance    psychophysics    engineering    feedback    theory    time    movement    learning    virtual    network    generating    behavioural    efference    origin    clarify    body    self    carry    predict    experimental    tactile    background    psychology    electrical    henrik    responsible    functional    perception    me    predictions    arise    scientific   

Project "TICKLE ME" data sheet

The following table provides information about the project.

Coordinator
KAROLINSKA INSTITUTET 

Organization address
address: Nobels Vag 5
city: STOCKHOLM
postcode: 17177
website: www.ki.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 173˙857 €
 EC max contribution 173˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2019-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KAROLINSKA INSTITUTET SE (STOCKHOLM) coordinator 173˙857.00

Map

 Project objective

Why can’t you tickle yourself? Previous behavioural and neuroimaging evidence suggests that when we move one hand to touch the other, the resulting tactile sensation is perceived as less intense compared to identical touches of external origin. This sensory attenuation (SA) phenomenon is hypothesized to arise because our brains use internal information about the motor command (efference copy) to predict the tactile consequences of the movement and attenuate the tactile feedback based on these predictions. However, little is known about how the brain produces SA. ‘TICKLE ME’ combines, for the first time, computational motor control theory, force perception behavioural experiments, and state-of-the-art neuroimaging methods to address how the human brain distinguishes between self-generated and externally-generated touch. The project aims to: - clarify the principal importance of voluntary motor commands, efference copy, and perceived physical contact of body parts in a series of behavioural experiments - identify the neuroanatomical network responsible for generating SA by using state-of-the-art functional magnetic resonance imaging - investigate how the brain learns to predict the sensory consequences of our actions by using error-driven learning mechanisms - develop a novel neurocomputational model of SA The project will result in a synergy between the applicant’s highly interdisciplinary profile and the high quality of the host institution. The applicant has experience in different scientific areas such as experimental cognitive psychology, psychophysics, virtual reality, computational modeling and programming as well as a background in electrical engineering that makes her uniquely suited to carry out this project. Additionally, the Karolinska Institutet, the Department of Neuroscience, and in particular Prof. Henrik Ehrsson will provide valuable theoretical knowledge in sensorimotor control as well as technical expertise in neuroimaging in support of the project.

 Publications

year authors and title journal last update
List of publications.
2017 Konstantina Kilteni, H. Henrik Ehrsson
Sensorimotor predictions and tool use: Hand-held tools attenuate self-touch
published pages: 1-9, ISSN: 0010-0277, DOI: 10.1016/j.cognition.2017.04.005
Cognition 165 2019-08-30
2018 Konstantina Kilteni, Benjamin Jan Andersson, Christian Houborg, H. Henrik Ehrsson
Motor imagery involves predicting the sensory consequences of the imagined movement
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-03989-0
Nature Communications 9/1 2019-08-30
2017 Konstantina Kilteni, H. Henrik Ehrsson
Body ownership determines the attenuation of self-generated tactile sensations
published pages: 8426-8431, ISSN: 0027-8424, DOI: 10.1073/pnas.1703347114
Proceedings of the National Academy of Sciences 114/31 2019-08-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TICKLE ME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TICKLE ME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More