Opendata, web and dolomites

CaLiAT

A novel pathway for generation of building blocks for antibiotic biosynthesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CaLiAT project word cloud

Explore the words cloud of the CaLiAT project. It provides you a very rough idea of what is the project "CaLiAT" about.

engineering    experiencing    genome    animals    building    actinomycete    gain    extender    divides    microorganisms    humans    acquire    realising    equip    acid    additional    chemical    polyketide    area    training    dependent    rational    informatic    biosynthesis    resistance    spread    units    supplying    bacteria    blocks    domains    routes    fed    researcher    published    substrate    sequence    unusual    enzymes    secondly    assembly    line    drugs    ligases    antibiotic    alteration    offers    acids    biosynthetic    search    insights    designed    precursors    natural    polyketides    leads    diversity    substrates    sequencing    knockouts    biotin    bearing    ligase    biology    potentially    revival    confirm    examples    leadership    strategies    sustainable    efficient    specificity    pool    carboxylases    competitive    structures    drug    gene    vitro    bio    parts    precursor    acyltransferase    strains    first    carboxylase    cognate    expand    threat    analogues    targetted    sought    newly    recruit    biochemical    databases    fatty    accept    time    significantly    family    ways    candidate    engineered   

Project "CaLiAT" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

The development and spread of antibiotic resistance in microorganisms is a major threat to both humans and animals and the search for new and improved drugs is of high importance. Natural products are experiencing a strong revival as leads in drug development, and biosynthetic engineering offers sustainable routes to new and potentially improved analogues. Finding new ways to make these rational changes should ensure that the European Research Area remains competitive in realising the potential of this technology. The aim of this project is to gain a detailed understanding of a newly-identified family of enzymes supplying unusual fatty acid building blocks for assembly-line biosynthesis of natural products; and to exploit these insights to develop more efficient strategies for targeted alteration of their structures. The novel precursor enzymes to be studied, a ligase and a biotin-dependent carboxylase, are in pathways to several polyketides produced by actinomycete bacteria. The project divides into three parts. First, additional examples of the new pathway will be sought by targetted whole-genome sequencing, as well as bio-informatic analysis of published sequence databases, and gene knockouts used to confirm the role of the pathway in providing polyketide extender units. Secondly, candidate ligases, carboxylases and the cognate acyltransferase domains that specifically recruit the unusual extender units will be studied in vitro for substrate specificity and for their ability to accept non-natural substrates bearing chemical functionality. Finally, a range of non-natural fatty acids will be fed as precursors to engineered strains designed to produce novel polyketide analogues. This approach should significantly expand the available pool of polyketide diversity. At the same time, the researcher will acquire high-level training in biochemical and chemical biology approaches that will help equip her for a leadership role in research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CALIAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CALIAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More