Opendata, web and dolomites

CaLiAT

A novel pathway for generation of building blocks for antibiotic biosynthesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CaLiAT project word cloud

Explore the words cloud of the CaLiAT project. It provides you a very rough idea of what is the project "CaLiAT" about.

realising    targetted    acids    precursor    blocks    leads    animals    biochemical    substrates    biotin    extender    potentially    time    sustainable    bio    sequence    training    engineered    bearing    acquire    biosynthesis    gene    expand    precursors    fatty    sought    search    significantly    informatic    unusual    analogues    alteration    candidate    enzymes    published    knockouts    structures    efficient    humans    routes    strategies    pool    newly    assembly    competitive    antibiotic    sequencing    revival    supplying    area    engineering    carboxylase    gain    databases    strains    confirm    examples    acid    bacteria    designed    building    offers    cognate    natural    acyltransferase    microorganisms    units    diversity    insights    accept    genome    dependent    specificity    actinomycete    ligases    first    leadership    resistance    divides    additional    polyketides    family    recruit    secondly    rational    threat    biology    drug    equip    fed    researcher    ways    ligase    vitro    line    domains    parts    polyketide    chemical    drugs    substrate    experiencing    biosynthetic    carboxylases    spread   

Project "CaLiAT" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

The development and spread of antibiotic resistance in microorganisms is a major threat to both humans and animals and the search for new and improved drugs is of high importance. Natural products are experiencing a strong revival as leads in drug development, and biosynthetic engineering offers sustainable routes to new and potentially improved analogues. Finding new ways to make these rational changes should ensure that the European Research Area remains competitive in realising the potential of this technology. The aim of this project is to gain a detailed understanding of a newly-identified family of enzymes supplying unusual fatty acid building blocks for assembly-line biosynthesis of natural products; and to exploit these insights to develop more efficient strategies for targeted alteration of their structures. The novel precursor enzymes to be studied, a ligase and a biotin-dependent carboxylase, are in pathways to several polyketides produced by actinomycete bacteria. The project divides into three parts. First, additional examples of the new pathway will be sought by targetted whole-genome sequencing, as well as bio-informatic analysis of published sequence databases, and gene knockouts used to confirm the role of the pathway in providing polyketide extender units. Secondly, candidate ligases, carboxylases and the cognate acyltransferase domains that specifically recruit the unusual extender units will be studied in vitro for substrate specificity and for their ability to accept non-natural substrates bearing chemical functionality. Finally, a range of non-natural fatty acids will be fed as precursors to engineered strains designed to produce novel polyketide analogues. This approach should significantly expand the available pool of polyketide diversity. At the same time, the researcher will acquire high-level training in biochemical and chemical biology approaches that will help equip her for a leadership role in research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CALIAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CALIAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More