Opendata, web and dolomites

CaLiAT

A novel pathway for generation of building blocks for antibiotic biosynthesis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CaLiAT project word cloud

Explore the words cloud of the CaLiAT project. It provides you a very rough idea of what is the project "CaLiAT" about.

efficient    domains    ways    line    fed    revival    units    routes    search    knockouts    precursor    bearing    spread    gene    cognate    divides    published    first    drugs    microorganisms    animals    databases    rational    pool    offers    dependent    building    leads    polyketide    examples    additional    specificity    acyltransferase    biotin    parts    genome    substrate    precursors    acids    strains    enzymes    natural    training    insights    competitive    newly    engineering    assembly    carboxylases    time    area    accept    actinomycete    fatty    confirm    drug    equip    informatic    antibiotic    biochemical    researcher    family    engineered    acquire    sequence    targetted    biosynthetic    substrates    biosynthesis    realising    carboxylase    chemical    diversity    unusual    ligases    supplying    threat    acid    resistance    significantly    sought    structures    potentially    bio    analogues    experiencing    bacteria    sequencing    gain    extender    blocks    ligase    expand    alteration    secondly    humans    strategies    leadership    sustainable    recruit    polyketides    biology    designed    vitro    candidate   

Project "CaLiAT" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The development and spread of antibiotic resistance in microorganisms is a major threat to both humans and animals and the search for new and improved drugs is of high importance. Natural products are experiencing a strong revival as leads in drug development, and biosynthetic engineering offers sustainable routes to new and potentially improved analogues. Finding new ways to make these rational changes should ensure that the European Research Area remains competitive in realising the potential of this technology. The aim of this project is to gain a detailed understanding of a newly-identified family of enzymes supplying unusual fatty acid building blocks for assembly-line biosynthesis of natural products; and to exploit these insights to develop more efficient strategies for targeted alteration of their structures. The novel precursor enzymes to be studied, a ligase and a biotin-dependent carboxylase, are in pathways to several polyketides produced by actinomycete bacteria. The project divides into three parts. First, additional examples of the new pathway will be sought by targetted whole-genome sequencing, as well as bio-informatic analysis of published sequence databases, and gene knockouts used to confirm the role of the pathway in providing polyketide extender units. Secondly, candidate ligases, carboxylases and the cognate acyltransferase domains that specifically recruit the unusual extender units will be studied in vitro for substrate specificity and for their ability to accept non-natural substrates bearing chemical functionality. Finally, a range of non-natural fatty acids will be fed as precursors to engineered strains designed to produce novel polyketide analogues. This approach should significantly expand the available pool of polyketide diversity. At the same time, the researcher will acquire high-level training in biochemical and chemical biology approaches that will help equip her for a leadership role in research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CALIAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CALIAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More  

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

SCAPA (2019)

Functional analysis of Alternative Polyadenylation during neuronal differentiation at single cell resolution

Read More